DNA and modified vaccinia virus Ankara (MVA) are vaccine vehicles suitable and safe for use in humans. Here, by using a multicytotoxic T-lymphocyte (CTL) epitope gene and a DNA prime-MVA boost vaccination regimen, high levels of CTLs specific for a single simian immunodeficiency virus (SIV) gag-derived epitope were elicited in rhesus macaques. These vaccine-induced CTLs were capable of killing SIV-infected cells in vitro. Fluorescence-activated cell sorter analysis using soluble tetrameric major histocompatibility complex-peptide complexes showed that the vaccinated animals had 1 to 5% circulating CD8+ lymphocytes specific for the vaccine epitope, frequencies comparable to those in SIV-infected monkeys. Upon intrarectal challenge with pathogenic SIVmac251, no evidence for protection was observed in at least two of the three vaccinated animals. This study does not attempt to define correlates of protective immunity nor design a protective vaccine against immunodeficiency viruses, but it demonstrates clearly that the DNA prime-MVA boost regimen is an effective protocol for induction of CTLs in macaques. It also shows that powerful tools for studying the role of CTLs in the control of SIV and human immunodeficiency virus infections are now available: epitope-based vaccines, a protocol for an effective induction of CTLs in primates, and a simple and sensitive method for quantitation of epitope-specific T cells. The advantages of the DNA prime-MVA boost regimen as well as the correlations of tetramer staining of peripheral blood lymphocytes with CTL killing in vitro and postchallenge control of viremia are discussed.
Particle-mediated delivery of a DNA expression vector encoding the hemagglutinin (HA) of an H1N1 influenza virus (A/Swine/Indiana/1726/88) to porcine epidermis elicits a humoral immune response and accelerates the clearance of virus in pigs following a homotypic challenge. Mucosal administration of the HA expression plasmid elicits an immune response that is qualitatively different than that elicited by the epidermal vaccination in terms of inhibition of the initial virus infection. In contrast, delivery of a plasmid encoding an influenza virus nucleoprotein from A/PR/8/34 (H1N1) to the epidermis elicits a strong humoral response but no detectable protection in terms of nasal virus shed. The efficacy of the HA DNA vaccine was compared with that of a commercially available inactivated whole-virus vaccine as well as with the level of immunity afforded by previous infection. The HA DNA and inactivated viral vaccines elicited similar protection in that initial infection was not prevented, but subsequent amplification of the infection is limited, resulting in early clearance of the virus. Convalescent animals which recovered from exposure to virulent swine influenza virus were completely resistant to infection when challenged. The porcine influenza A virus system is a relevant preclinical model for humans in terms of both disease and gene transfer to the epidermis and thus provides a basis for advancing the development of DNA-based vaccines.
Two people developed symptoms of influenza 36 h after collecting nasal swabs from pigs experimentally infected with A/Sw/IN/1726/88 (Sw/IN). Pharyngeal swabs from these persons tested positive for influenza virus RNA 8 days after infection. Analysis of hemi-nested polymerase chain reaction (PCR) products indicated that the hemagglutinin (HA) segments of the isolates were genetically related to the HA of Sw/IN. Four influenza A virus isolates (A/WI/4754/94, A/WI/4756/94, A/WI/4758/94, A/WI/4760/94) were recovered from a 39-year-old man and 2 (A/WI/4755/94, A/WI/4757/94) from a 31-year-old woman. The HAs of the isolates were antigenically indistinguishable from the virus used to infect the pigs. Sequence analysis of the HA genes indicated they were 99.7% identical to the HA of the virus used in the experiment. Multisegment reverse transcription-PCR proved that all of the segments originated from Sw/IN, demonstrating that transmission of swine H1N1 viruses to humans occurs directly and readily, despite Animal Biosafety Level 3 containment practices used for these experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.