Heavy metal accumulation in mesquite trees ( Prosopis laevigata ) growing in aluminum, titanium, chromium and zirconium-polluted soils of a semi-arid region in Mexico was investigated using wavelength dispersive X-ray fluorescence analysis. The results showed that P. laevigata trees can hyper accumulate up to 4100 mg/kg of Al, 14000 mg/kg of Fe, 1600 mg/kg of Ti, 2500 mg/kg of Zn, but not chromium, regarding high chromium concentrations found in soils (435 mg/kg). Since plant-associated microorganism can modulate phytoremediation efficiency, the biodiversity of P. laevigata associated bacteria was studied. Eighty-eight isolates from P. laevigata nodules were obtained; all isolates tolerated high concentrations of Al, Fe, Zn and Cr in vitro . The top-six chromium tolerant strains were identified by 16S rRNA sequence analysis as belonging to genus Bacillus . Bacillus sp. MH778713, close to Bacillus cereus group, showed to be the most resistant strain, tolerating up to 15000 mg/L Cr (VI) and 10000 mg/L of Al. Regarding the bioaccumulation traits, Bacillus sp. MH778713 accumulated up to 100 mg Cr(VI)/g of cells when it was exposed to 1474 mg/L of Cr VI. To assess Bacillus sp. MH778713 ability to assist Prosopis laevigata phytoremediation; twenty plants were inoculated or non-inoculated with Bacillus sp. MH778713 and grown in nitrogen-free Jensen’s medium added with 0, 10 and 25 mg/L of Cr(VI). Only plants inoculated with Bacillus sp. grew in the presence of chromium showing the ability of this strain to assist chromium phytoremediation. P. laevigata and Bacillus spp. may be considered as good candidates for soil restoration of arid and semiarid sites contaminated with heavy metals.
Aim The genus Fusarium comprises plant pathogenic species with agricultural relevance. Fusarium oxysporum causes tomato wilt disease with significant production losses. The use of agrochemicals to control the Fusarium wilt of tomato is not environmentally friendly. Bacillus species, as biocontrol agents, provide a safe and sustainable means to control Fusarium‐induced plant diseases. In this study, the ability of Bacillus cereus MH778713, a strain isolated from root nodules of Prosopis laevigata, to protect tomato plants against Fusarium wilt was evaluated. Methods and results Bacillus cereus MH778713 and its volatiles inhibited the radial growth of F. oxysporum and stimulated tomato seedling growth in in vitro and in vivo tests. When tomato plants growing in the greenhouse were inoculated with B. cereus MH778713, the percentage of wilted plants decreased from 96% to 12%, indicating an effective crop protection against Fusarium wilt. Among the metabolites produced by B. cereus MH778713, hentriacontane and 2,4‐di‐tert‐butylphenol promoted tomato seedling growth and showed antifungal activity against the target pathogen. Conclusion The inoculation of B. cereus MH778713 on tomato seedlings helped plants to manage Fusarium wilt, suggesting the potential of B. cereus MH778713 as a biocontrol agent. Significance and Impact of the Study These results complement our previous studies on chromium tolerance and bioremediation traits of B. cereus MH778713 by highlighting the potential of this metal‐resistant micro‐organism to boost crop growth and disease resistance.
Volatile organic compounds (VOCs) produced by rhizobacteria have been proven to stimulate plant growth during germination and seedling stages. However, the modulating effect of bacterial volatiles on the germination of seeds subjected to heavy metal stress is scarcely studied. In this work, the ability of volatiles released by Bacillus sp. MH778713 to induce seed dormancy breakage in Prosopis laevigata and Arabidopsis thaliana seeds were examined. The minimal inhibitory concentration of chromium (Cr) VI that prevents seed germination of P. laevigata and A. thaliana on water-Cr-agar plates was 2500 and 100 mg L −1 , respectively. Remarkably, partitioned Petri-dish co-cultivation of Bacillus sp. MH778713 and plant seeds under Cr-stress showed the beneficial effect of volatiles emitted by Bacillus sp. MH778713, helping plant seeds to overcome Cr-stress. Among the metabolites emitted by Bacillus sp. MH778713, octadecane, heneicosane, 2,4-di-tert-butylphenol, hexadecane, eicosane, octacosane, and tetratriacontane were the most abundant. To confirm that these long-chain compounds produced by Bacillus sp. MH778713 could be responsible for the seed dormancy breakage, high pure organic compounds (2,4-di-tert-butylphenol, heneicosane, hentriacontane, and tetracosane) were used directly in germination assays of P. laevigata and A. thaliana seeds instead of volatiles emitted by Bacillus sp. MH778713. All organic compounds allowed Prosopis and Arabidopsis seeds to overcome Cr-toxicity and germinate. The results of this study provide new insight into the role of long-chain bacterial compounds produced by Bacillus sp. MH778713 as triggers of seed abiotic stress tolerance, surmounting chromium stress and stimulating seedling development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.