The cyclic nucleotide phosphodiesterase10A (PDE10) has been mostly studied as a therapeutic target for certain psychiatric and neurological conditions, although a potential role in tumorigenesis has not been reported. Here we show that PDE10 is elevated in human colon tumor cell lines compared with normal colonocytes, as well as in colon tumors from human clinical specimens and intestinal tumors from ApcMin/+ mice compared with normal intestinal mucosa, respectively. An isozyme and tumor-selective role of PDE10 was evident by the ability of small molecule inhibitors and siRNA knockdown to suppress colon tumor cell growth with reduced sensitivity of normal colonocytes. Stable knockdown of PDE10 by shRNA also inhibits colony formation and increases doubling time of colon tumor cells. PDE10 inhibition selectively activates cGMP/PKG signaling to suppress β-catenin levels and T-cell factor (TCF) transcriptional activity in colon tumor cells. Conversely, ectopic expression of PDE10 in normal and precancerous colonocytes increases proliferation and activates TCF transcriptional activity. These observations suggest a novel role of PDE10 in colon tumorigenesis and that inhibitors may be useful for the treatment or prevention of colorectal cancer.
Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone. A novel sulindac derivative, ADT-094 was designed to lack COX-1/-2 inhibitory activity but have improved potency to inhibit PDE5 and 10. ADT-094 displayed >500 fold higher potency to inhibit colon tumor cell growth compared with sulindac by activating cGMP/PKG signaling to suppress proliferation and induce apoptosis. Combined inhibition of PDE5 and 10 by treatment with ADT-094, PDE isozyme-selective inhibitors, or by siRNA knockdown also suppresses β-catenin, TCF transcriptional activity, and the levels of downstream targets, cyclin D1 and survivin. These results suggest that dual inhibition of PDE5 and 10 represents novel strategy for developing potent and selective anticancer drugs.
Small intestinal ulceration, bleeding, and inflammation are major adverse effects associated with the use of diclofenac (DCF) or other nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms of DCF enteropathy are poorly understood, but there is increasing evidence that topical effects are involved. The aim of this study was to explore the role of c-Jun-N-terminal kinase (JNK) in DCF-induced enterocyte death because JNK not only regulates mitochondria-mediated apoptosis but also is a key node where many of the proximal stress signals converge. Male C57BL/6J mice were injected intraperitoneally with DCF or vehicle (Solutol HS-15), and the extent of small intestinal ulceration was determined. A single dose of DCF (60 mg/kg) produced numerous ulcers in the third and fourth quartiles of the jejunum and ileum, with maximal effects after 18 h and extensive recovery after 48 h. To study the molecular pathways leading to enterocyte injury, we isolated villi-enriched mucosal fractions from DCF-treated mice. Immunoblot studies with a phosphospecific JNK antibody revealed that JNK1/2 (p46) was activated at 6 h, leading to phosphorylation of the downstream target c-Jun. The levels of the JNK-regulated proapoptotic transcription factor C/EBP homologous protein (CHOP) were also increased after DCF. The selective JNK inhibitor SP600125 (30 mg/kg ip), given both 1 h before and 1 h after DCF, blocked JNK kinase activity and afforded significant protection against DCF enteropathy. In conclusion, these data demonstrate that the JNK pathway is critically involved in the pathogenesis of DCF-induced enteropathy and suggest a potential application of JNK inhibitors in the prevention of NSAID-induced enteropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.