Survival was excellent without adjuvant therapy, and no other factors correlated with survival. Children with massive invasion have a higher relapse rate but comparable survival to those with focal invasion provided that aggressive therapy for extraocular relapse is available with adequate safety conditions.
IMPORTANCE Different staging systems for extraocular retinoblastoma have been published, but to date they have not been validated in large cohorts.OBJECTIVE To review 533 patients (and pathology slides) with retinoblastoma included in 4 protocols (January 1, 1988, to December 31, 2009 who received uniform treatment.DESIGN AND SETTING Retrospective review in a hospital setting. A critical analysis for detecting inconsistencies and omissions was performed.PARTICIPANTS Patients were reclassified according to the modified St Jude Children's Research Hospital staging system, Grabowski-Abramson staging system, International Retinoblastoma Staging System (IRSS), and American Joint Committee on Cancer TNM staging system.
MAIN OUTCOME AND MEASUREThe main outcome measure was disease-free survival (DFS), considering only extraocular relapse as an event.
RESULTSIn the IRSS and the St Jude system, higher stages correlated with poorer DFS. For intraocular disease, only the TNM system and the IRSS included pathological definitions, and all systems except for the IRSS included substages without differences in DFS. Omissions of factors significantly associated with lower DFS included scleral invasion by the TNM system and massive choroidal invasion by the Grabowski-Abramson system. The St Jude system omits postlaminar optic nerve involvement, but this omission did not correlate significantly with lower DFS because these patients received intensive therapy. No differences in DFS were observed among substages for metastatic disease except for the presence of central nervous system involvement. All staging systems had inconsistencies in definitions of extent of disease. No system provides guidelines for imaging.
CONCLUSIONS AND RELEVANCEOnly the IRSS and the St Jude system allowed for grouping of patients with increasing risk of extraocular relapse. For lower stages, only the IRSS considers all unequivocal pathological prognostic factors. For higher stages, all systems had redundant information, resulting in an excess of substages.
MF is unusual in children. The hypopigmented form is the most common. Diagnosis is delayed because the condition is similar to other hypopigmented diseases seen more often in childhood. Although prognosis is good, the rate of recurrence is high, so long-term follow-up is necessary.
High levels of circulating EBV load are used as a marker of post-transplant lymphoproliferative disorders (PTLD). There is no consensus regarding the threshold level indicative of an increase in peripheral EBV DNA. The aim of the study was to clinically validate a developed EBV quantification assay for early PTLD detection. Transversal study: paired peripheral blood mononuclear cells (PBMC), plasma and oropharyngeal lymphoid tissue (OLT) from children undergoing a solid organ transplant with (n=58) and without (n=47) PTLD. Retrospective follow-up: 71 paired PBMC and plasma from recipients with (n=6) and without (n=6) PTLD history. EBV load was determined by real-time PCR. The diagnostic ability to detect all PTLD (categories 1-4), advanced PTLD (categories 2-4) or neoplastic PTLD (categories 3 and 4) was estimated by analyzing the test performance at different cut-off values or with a load variation greater than 0.5log units. The higher diagnostic performance for identifying all, advanced or neoplastic PTLD, was achieved with cut-off values of 1.08; 1.60 and 2.47log EBVgEq/10(5) PBMC or 2.30; 2.60; 4.47loggEq/10(5) OLT cells, respectively. EBV DNA detection in plasma showed high specificity but low (all categories) or high (advanced/neoplastic categories) sensitivity for PTLD identification. Diagnostic performance was greater when: (1) a load variation in PBMC or plasma was identified; (2) combining the measure of EBV load in PBMC and plasma. The best diagnostic ability to identify early PTLD stages was achieved by monitoring EBV load in PBMC and plasma simultaneously; an algorithm was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.