This paper presents recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results. The methodologies described focus on the evaluation of the probabilities of occurrence of different landslide types with certain characteristics. Methods used to determine the spatial distribution of landslide intensity, the characterisation of the elements at risk, the assessment of the potential degree of damage and the quantification of the vulnerability of the elements at risk, and those used to perform the quantitative risk analysis are also described. The paper is intended for use by scientists and practising engineers, geologists and other landslide experts.
Abstract. Despite the large number of recent advances and developments in landslide susceptibility mapping (LSM) there is still a lack of studies focusing on specific aspects of LSM model sensitivity. For example, the influence of factors such as the survey scale of the landslide conditioning variables (LCVs), the resolution of the mapping unit (MUR) and the optimal number and ranking of LCVs have never been investigated analytically, especially on large data sets. In this paper we attempt this experimentation concentrating on the impact of model tuning choice on the final result, rather than on the comparison of methodologies. To this end, we adopt a simple implementation of the random forest (RF), a machine learning technique, to produce an ensemble of landslide susceptibility maps for a set of different model settings, input data types and scales. Random forest is a combination of Bayesian trees that relates a set of predictors to the actual landslide occurrence. Being it a nonparametric model, it is possible to incorporate a range of numerical or categorical data layers and there is no need to select unimodal training data as for example in linear discriminant analysis. Many widely acknowledged landslide predisposing factors are taken into account as mainly related to the lithology, the land use, the geomorphology, the structural and anthropogenic constraints. In addition, for each factor we also include in the predictors set a measure of the standard deviation (for numerical variables) or the variety (for categorical ones) over the map unit. As in other systems, the use of RF enables one to estimate the relative importance of the single input parameters and to select the optimal configuration of the classification model. The model is initially applied using the complete set of input variables, then an iterative process is implemented and progressively smaller subsets of the parameter space are considered. The impact of scale and accuracy of input variables, as well as the effect of the random component of the RF model on the susceptibility results, are also examined. The model is tested in the Arno River basin (central Italy). We find that the dimension of parameter space, the mapping unit (scale) and the training process strongly influence the classification accuracy and the prediction process. This, in turn, implies that a careful sensitivity analysis making use of traditional and new tools should always be performed before producing final susceptibility maps at all levels and scales.
Background: The current availability of advanced remote sensing technologies in the field of landslide analysis allows for rapid and easily updatable data acquisitions, improving the traditional capabilities of detection, mapping and monitoring, as well as optimizing fieldwork and investigating hazardous or inaccessible areas, while granting at the same time the safety of the operators. Among Earth Observation (EO) techniques in the last decades optical Very High Resolution (VHR) and Synthetic Aperture Radar (SAR) imagery represent very effective tools for these implementations, since very high spatial resolution can be obtained by means of optical systems, and by the new generations of sensors designed for interferometric applications. Although these spaceborne platforms have revisiting times of few days they still cannot match the spatial detail or time resolution achievable by means of Unmanned Aerial Vehicles (UAV) Digital Photogrammetry (DP), and ground-based devices, such as Ground-Based Interferometric SAR (GB-InSAR), Terrestrial Laser Scanning (TLS) and InfraRed Thermography (IRT), which in the recent years have undergone a significant increase of usage, thanks to their technological development and data quality improvement, fast measurement and processing times, portability and cost-effectiveness. In this paper the potential of the abovementioned techniques and the effectiveness of their synergic use is explored in the field of landslide analysis by analyzing various case studies, characterized by different slope instability processes, spatial scales and risk management phases. Results: Spaceborne optical Very High Resolution (VHR) and SAR data were applied at a basin scale for analysing shallow rapid-moving and slow-moving landslides in the emergency management and post-disaster phases, demonstrating their effectiveness for post-disaster damage assessment, landslide detection and rapid mapping, the definition of states of activity and updating of landslide inventory maps. The potential of UAV-DP for very high resolution periodical checks of instability phenomena was explored at a slope-scale in a selected test site; two shallow landslides were detected and characterized, in terms of areal extension, volume and temporal evolution. The combined use of GB-InSAR, TLS and IRT ground based methods, was applied for the surveying, monitoring and characterization of rock slides, unstable cliffs and translational slides. These applications were evaluated in the framework of successful rapid risk scenario evaluation, long term monitoring and emergency management activities. All of the results were validated by means of field surveying activities.
Abstract:The measurement of landslide superficial displacement often represents the most effective method for defining its behavior, allowing one to observe the relationship with triggering factors and to assess the effectiveness of the mitigation measures. Persistent Scatterer Interferometry (PSI) represents a powerful tool to measure landslide displacement, as it offers a synoptic view that can be repeated at different time intervals and at various scales. In many cases, PSI data are integrated with in situ monitoring instrumentation, since the joint use of satellite and ground-based data facilitates the geological interpretation of a landslide and allows a better understanding of landslide geometry and kinematics. In this work, PSI interferometry and conventional ground-based monitoring techniques have been used to characterize and to monitor the Santo Stefano d'Aveto landslide located in the Northern Apennines, Italy. This landslide can be defined as an earth rotational slide. PSI analysis has contributed to a more in-depth investigation of the phenomenon. In particular, PSI measurements have allowed better redefining of the boundaries of the landslide and the state of activity, while the time series analysis has permitted better understanding of the deformation pattern and its relation with the causes of the landslide itself. The integration of ground-based monitoring data and PSI data have provided sound results for landslide characterization. The punctual information deriving from inclinometers can help in defining the actual location of the sliding surface and the involved volumes, while the measuring of pore water pressure conditions or water table level can suggest a correlation between the deformation patterns and the triggering factors.
Abstract. HIRESSS (HIgh REsolution Slope StabilitySimulator) is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and on large areas using parallel computational techniques. The physical model proposed is composed of two parts: hydrological and geotechnical. The hydrological model receives the rainfall data as dynamical input and provides the pressure head as perturbation to the geotechnical stability model that computes the factor of safety (FS) in probabilistic terms. The hydrological model is based on an analytical solution of an approximated form of the Richards equation under the wet condition hypothesis and it is introduced as a modeled form of hydraulic diffusivity to improve the hydrological response. The geotechnical stability model is based on an infinite slope model that takes into account the unsaturated soil condition. During the slope stability analysis the proposed model takes into account the increase in strength and cohesion due to matric suction in unsaturated soil, where the pressure head is negative. Moreover, the soil mass variation on partially saturated soil caused by water infiltration is modeled.The model is then inserted into a Monte Carlo simulation, to manage the typical uncertainty in the values of the input geotechnical and hydrological parameters, which is a common weak point of deterministic models. The Monte Carlo simulation manages a probability distribution of input parameters providing results in terms of slope failure probability. The developed software uses the computational power offered by multicore and multiprocessor hardware, from modern workstations to supercomputing facilities (HPC), to achieve the simulation in reasonable runtimes, compatible with civil protection real time monitoring.A first test of HIRESSS in three different areas is presented to evaluate the reliability of the results and the runtime performance on large areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.