Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome–bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections.
This report describes the first case of naturally acquired inhalation anthrax in the United States since 1976. The patient's clinical course included adjunctive treatment with human anthrax immunoglobulin. Clinical correlation of serologic assays for the lethal factor component of lethal toxin and anti-protective antigen immunoglobulin G are also presented.
Dry dog and cat foods manufactured at plant X were linked to human illness for a 3-year period. This outbreak highlights the importance of proper handling and storage of pet foods in the home to prevent human illness, especially among young children.
BackgroundThis open-label, single-arm study was conducted to evaluate the long-term safety and efficacy of a novel buprenorphine formulation, buprenorphine buccal film, in the treatment of moderate-to-severe chronic pain requiring around-the-clock opioids.MethodsThe primary purpose of this study was to evaluate the long-term safety and tolerability of buprenorphine buccal film. Five hundred and six patients who completed previous studies with buprenorphine buccal film (n=445; rollover patients) or were recruited de novo for this study (n=61) were enrolled in this study. All patients underwent a dose titration period of ≤6 weeks, during which doses of buprenorphine buccal film were adjusted to a maximum 900 µg every 12 hours, depending on tolerability and the need for rescue medication. An optimal dose was defined as the dose that the patient found satisfactory for both pain relief and tolerability, without the need for rescue medication or with ≤2 tablets of rescue medication per day. Once the optimal dose was reached, treatment was continued for ≤48 weeks. Pain intensity was measured throughout the study using a 0–10 numerical rating scale.ResultsOf 435 patients achieving an optimal dose of buprenorphine buccal film who commenced long-term treatment, 158 (36.3%) completed 48 weeks of treatment. Treatment-related adverse events occurred in 116 patients (22.9%) during the titration phase and 61 patients (14.0%) during the long-term treatment phase, and adverse events leading to discontinuation of treatment occurred in 14 (2.8%) and 14 (3.2%) patients, respectively. The most common adverse events were those typically associated with opioids, such as nausea, constipation, and headache. In both rollover and de novo patients, pain intensity scores remained constant at approximately 3–4 during long-term treatment, and the dose of buprenorphine buccal film remained unchanged in 86.2% of patients.ConclusionIn appropriate patients, buprenorphine buccal film demonstrated tolerability and efficacy in the long-term management of chronic pain.
We report the earliest recognized fatality associated with laboratory-confirmed pandemic H1N1 (pH1N1) influenza in a domestic cat in the United States. The 12-year old, indoor cat died on 6 November 2009 after exposure to multiple family members who had been ill with influenza-like illness during the peak period of the fall wave of pH1N1 in Pennsylvania during late October 2009. The clinical presentation, history, radiographic, laboratory and necropsy findings are presented to assist veterinary care providers in understanding the features of this disease in cats and the potential for transmission of infection to pets from infected humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.