BackgroundWe determined recently that dentin sialophosphoprotein (DSPP), a member of the SIBLING (Small integrin-binding ligand N-linked glycoproteins) family of phosphoglycoproteins, is highly upregulated in human oral squamous cell carcinomas (OSCCs) where upregulation is associated with tumor aggressiveness. To investigate the effects of DSPP-silencing on the tumorigenic profiles of the oral cancer cell line, OSC2, short-hairpin RNA (shRNA) interference was employed to silence DSPP in OSC2 cells.Methodology/Principal FindingsMultiple regions of DSPP transcript were targeted for shRNA interference using hDSP-shRNA lentiviral particles designed to silence DSPP gene expression. Control shRNA plasmid encoding a scrambled sequence incapable of degrading any known cellular mRNA was used for negative control. Following puromycin selection of stable lines of DSSP-silenced OSC2 cells, phenotypic hallmarks of oral carcinogenesis were assayed by western blot and RT-PCR analyses, MTT (cell-viability), colony-formation, modified Boyden-Chamber (migration and invasion), and flow cytometry (cell-cycle and apoptosis) analyses. DSPP-silenced OSC2 cells showed altered cell morphology, reduced viability, decreased colony-formation ability, decreased migration and invasion, G0/G1 cell-cycle arrest, and increased tumor cell sensitivity to cisplatin-induced apoptosis. Furthermore, MMP-2, MMP-3, MMP-9, VEGF, Ki-67, p53, and EGFR were down-regulated. There was a direct correlation between the degree of DSPP-silencing and MMP suppression, as indicated by least squares regression: MMP-2 {(y = 0.850x, p<0.001) (y = 1.156x, p<0.001)}, MMP-3 {(y = 0.994x, p<0.001) (y = 1.324x, p = 0.004)}, and MMP-9 {(y = 1.248x, p = 0.005, y = 0.809, p = 0.013)}.Conclusions/Significance DSPP-silencing in OSC2 cell decreased salient hallmarks of oral tumorigenesis and provides the first functional evidence of a potential key role for DSPP in oral cancer biology. The down-regulation of MMP-2, MMP-3, MMP-9, p53 and VEGF in DSPP-silenced OSC2 cells provides a significant functional/molecular framework for deciphering the mechanisms of DSPP activities in oral cancer biology.
The transcription factor NFkappaB plays a key role in the tissue inflammatory response. Metal ions released into tissues from biomaterials (e.g., Au, Pd, Ni, Hg) are known to alter the binding of NFkappaB proteins to DNA, thereby modulating the effect of NFkappaB on gene activation and, ultimately, the tissue response to biomaterials. Little is known about the effect of these metals on key signaling steps prior to NFkappaB-DNA binding such as transcription factor activation or nuclear translocation, yet these steps are equally important to modulation of the pathway. Oxidative stress is known to alter NFkappaB proteins and is suspected to play a role in metal-induced NFkappaB signaling modulation. Our aim in the current study was to assess the effects of sublethal levels of Ni, Hg, Pd, and Au ions on NFkappaB activation and nuclear translocation in the monocyte, which is acknowledged as an important orchestrator of the biological response to materials and the pathogenesis of chronic disease. Sublethal concentrations of Au(III), Ni(II), Hg(II), and Pd(II) were added to cultures of human THP1 monocytic cells for 72 h. In parallel cultures, lipopolysaccharide (LPS) was added for the last 30 min to activate the monocytic cells. Then cellular cytoplasmic and nuclear proteins were isolated, separated by electrophoresis, and probed for IkappaBalpha degradation (activation) and NFkappaB p65 translocation. Protein levels were digitally quantified and statistically compared. The levels of reactive oxygen species (ROS) in the monocytic cells were measured as a possible mechanism of metal-induced NFkappaB modulation. Only Au(III) activated IkappaBalpha degradation by itself. Au(III) and Pd(II) enhanced LPS-induced IkappaBalpha degradation, but Hg(II) and Ni(II) suppressed it. Au(III), Ni(II), and Pd(II) activated p65 nuclear translocation without LPS, and all but Ni(II) enhanced LPS-induced translocation. Collectively, the results suggest that these metal ions alter activation and translocation of NFkappaB, each in a unique way at unique concentrations. Furthermore, even when these metals had no overt effects on signaling by themselves, all altered activation of signaling by LPS, suggesting that the biological effects of these metals on monocytic function may only be manifest upon activation. None of the metal ions elevated levels of ROS at 72 h, indicating that ROS were probably not direct modulators of the NFkappaB activation or translocation at this late time point.
Metals are components of a variety of biomaterials used in orthopedic and dental appliances; however, their biocompatibility with the surrounding tissues is not completely understood. Monocytes are important immune cells that respond to inflammatory stimuli by rapidly producing a variety of inflammatory proteins. Regulation of this response often involves activation of the transcription factor NF kappa B. The current study was designed to determine whether monocyte activation of NF kappa B in response to bacterial lipopolysaccharide (LPS) is affected by pretreatment with metal ions. Concentrations of metal ions that affected cell number after 24 h of exposure were first determined. Then THP-1 human monocytes were cultured for 2 h in media containing metal ions at concentrations below levels that altered cell growth. Parallel cultures were treated with 10 microg/mL Escherichia coli LPS, and all samples were cultured an additional 2 h. Nuclear proteins were extracted and normalized amounts were incubated with [(32)P]-end-labeled NF kappa B consensus oligonucleotide. NF kappa B-DNA complexes were identified and quantified by electrophoretic mobility shift analysis. The extent of NF kappa B-DNA complex formation after metal ion pretreatment with or without LPS induction was compared to no treatment or LPS-only treated controls. Finally, LPS-induced IL1 beta secretion was measured from palladium-treated and control cells. Concentrations were identified for each metal ion (Ag(+), Co(2+), Cu(2+), Hg(2+), Ni(2+), and Pd(2+)) that did not reduce cell number after 24 h of exposure (ranging from 5 microM for Ag(+) and Hg(2+) to 200 microM for Ni(2+)). Exposures of 2 h at these concentrations did not alter cell morphology, staining with trypan blue, or cell number. LPS exposure had no effect on cell number with or without metal ions after 2 h. When metal treatment alone was assessed, none of the metal ions had a significant effect on NF kappa B-DNA binding. However, pretreatment with Co(2+), Ni(2+), Ag(1+), Hg(2+), and Pd(2+) significantly decreased NF kappa B-DNA binding by 40-70% versus LPS alone. Only Cu(2+) had no effect on LPS-induced NF kappa B-DNA complex formation. Pd(2+) lowered, but did not abolish, IL1 beta secretion at concentrations comparable to those that altered NF kappa B-DNA binding. These results suggest that many commonly used metals alter monocyte function at concentrations that are not overtly toxic, and that protein levels controlled in part by NF kappa B also may be altered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.