Black diamond is obtained by a controlled nanoscale periodic texturing of CVD diamond surface, able to drastically modify the interaction with solar radiation from optical transparency up to solar absorptance values even >90%. Surface texturing, performed by the use of an ultra-short pulse laser, is demonstrated to induce an intermediate band within the diamond bandgap supporting an efficient photoelectronic conversion of sub-bandgap photons (<5.5 eV). The intermediate band introduction results in an external quantum efficiency enhanced up to 800 nm wavelengths (and up two orders of magnitude larger than the starting transparent diamond film), without affecting the film transport capabilities. The optical and photoelectronic outstanding results open the path for future application of black diamond as a photon-enhanced thermionic emission cathode for solar concentrating systems, with advantages of excellent electronic properties combined with a potentially very low work function and high thermal stability
A laser-induced periodic surface structure (LIPSS) has been fabricated on polycrystalline diamond by an ultrashort Ti:Sapphire pulsed laser source (k = 800 nm, P = 3 mJ, 100 fs) in a high vacuum chamber (\10 -7 mbar) in order to increase diamond absorption in the visible and infrared wavelength ranges. A horizontally polarized laser beam had been focussed perpendicularly to the diamond surface and diamond target had been moved by an automated X-Y translational stage along the two directions orthogonal to the optical axis. Scanning electron microscopy of samples reveals an LIPSS with a ripple period of about 170 nm, shorter than the laser wavelength. Raman spectra of processed sample do not point out any evident sp 2 content, and diamond peak presents a right shift, indicating a compressive stress. The investigation of optical properties of fs-laser surface textured diamond is reported. Spectral photometry in the range 200/2,000 nm wavelength shows a significant increase of visible and infrared absorption (more than 80 %) compared to untreated specimens (less than 40 %). The analysis of optical characterization data highlights a close relationship between fabricated LIPSS and absorption properties, confirming the optical effectiveness of such a treatment as a light-trapping structure for diamond: these properties, reported for the first time, open the path for new applications of CVD diamond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.