In the present work, the use of scotta as substrate for bacterial fermentation was studied with the objective of obtaining a drink from transformation of this by-product. Scotta retains most of the lactose of the milk and it is normally colonized by a natural microbiota. A treatment was devised to reduce the autochthonous microbial populations in order to reduce competition towards the inoculated bacterial strains. Nine lactic acid bacteria (LAB) were assessed for their capability to develop in scotta. They evidenced different behaviors regarding growth rate, acidification capability and nitrogen consumption. A co-inoculum of three LAB, namely a Streptococcus thermophilus, a Lactobacillus delbrueckii subsp. bulgaricus and a Lb. acidophilus strains, chosen among those giving the best performances in single-strain fermentation trials, gave abundant (close to 10(9) cfu/ml) and balanced growth and lowered pH to 4.2, a value similar to that of yogurt. These results show that scotta may have potential as a substrate for bacterial growth for the production of a fermented drink. Further studies are needed to optimize the organoleptic aspects of the final product.
Grape marc used for the production of distilled beverages undergoes prolonged storage which allows alcoholic fermentation to occur. Harsh conditions including low pH, limited oxygen and nutrients, temperature fluctuations, and high ethanol concentrations imposed by that environment create a strong selective pressure on microorganisms. A detailed characterization of the bacterial community during two time points of the fermentation process was performed using high-throughput sequencing of the V3-V6 16S rDNA hypervariable regions. The results revealed a marked reduction in the number of bacterial species after 30 days of incubation and made it possible to identify those species that are able to grow in that extreme environment. The genome sequence of Lactobacillus fabifermentans, one of the dominant species identified, was then analyzed using shotgun sequencing and comparative genomics. The results revealed that it is one of the largest genomes among the Lactobacillus sequenced and is characterized by a large number of genes involved in carbohydrate utilization and in the regulation of gene expression. The genome was shaped through a large number of gene duplication events, while lateral gene transfer contributed to a lesser extent with respect to other Lactobacillus species. According to genomic analysis, its carbohydrate utilization pattern and ability to form biofilm are the main genetic traits linked to the adaptation the species underwent permitting it to grow in fermenting grape marc.
Eight Streptococcus thermophilus strains of dairy origin isolated in Italy were chosen to investigate autochthonous bacterial diversity in this important technological species. In the present study a comparative analysis of all the 17 S. thermophilus genomes publicly available was performed to identify the core and the variable genes, which vary among strains from 196 to 265. Additionally, correlation between the isolation site and the genetic distance was investigated at genomic level. Results highlight that the phylogenetic reconstruction differs from the geographical strain distribution. Moreover, strain M17PTZA496 has a genome of 2.15 Mbp, notably larger than that of the others, determined by lateral gene transfer (including phage-mediated incorporation) and duplication events. Important technological characters, such as growth kinetics, bacteriocin production, acidification kinetics and surface adhesion capability were studied in all the Italian strains. Results indicate a wide range of variability in adhesion properties that significantly clustered strains into four groups. Genomic differences among strains in relation to these characters were identified but a clear correlation between genotype and phenotype was not always found since most of the genomic modifications arise from single nucleotide polymorphisms. This research represents a step forward in the identification of strains-specific functions in Streptococcus thermophilus and it has also the potential to provide valuable information to predict strain specific behaviors in industrial processes.
We report the genome sequences of two Streptococcus thermophilus strains, TH1435 and TH1436, isolated from raw goat milk devoted to the production of artisanal cheese in the Friuli-Venezia Giulia region in Italy. The genome sequences of these two quickly acidifying strains are the first available genome sequences of S. thermophilus strains isolated in Italy.
Streptococcus thermophilus is a species widely used in the dairy industry for its capability to rapidly ferment lactose and lower the pH. The capability to use galactose produced from lactose hydrolysis is strain dependent and most of commercial S. thermophilus strains are galactose-negative (Gal−), although galactose-positive (Gal+) would be more technologically advantageous because this feature could provide additional metabolic products and prevent galactose accumulation in foods. In this study, a next generation sequencing transcriptome approach was used to compare for the first time a Gal+ and a Gal− strain to characterize their whole metabolism and shed light on their different properties, metabolic performance and gene regulation. Transcriptome analysis revealed that all genes of the gal operon were expressed very differently in Gal+ and in the Gal− strains. The expression of several genes involved in mixed acid fermentation, PTS sugars transporter and stress response were found enhanced in Gal+. Conversely, genes related to amino acids, proteins metabolism and CRISPR associated proteins were under-expressed. In addition, the strains showed a diverse series of predicted genes controlled by the transcriptional factor catabolite control protein A (CcpA). Overall, transcriptomic analysis suggests that the Gal+ strain underwent a metabolic remodeling to cope with the changed environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.