Solar Thermal Technology for the generation of electricity in large scale has been a reality in the world since the 1980s, when the first large-sized solar plants in the United States were introduced. Brazil presents great potential for the development of large-scale projects, although it is noted that the main barriers for the insertion of this technology in Brazilian market are the lack of incentives and goals and associated costs. In a way to contribute to the insertion of solar thermal technology in Brazil, this paper presents a macro-spatial approach, based on the use of Multiple-Criteria Decision Analysis and Geoprocessing, for the location of solar thermal power plants. The applied methodology for Pernambuco, located in the Northeast Region of Brazil, considered the implantation of parabolic trough solar power plant of 80 MW, operating only in solar mode, without heat storage. Based on performed analysis, it was confirmed that Pernambuco presents great potential for the installation of solar power plants, especially in the backlands of Pernambuco. Performed validations in the model demonstrate that the methodology attended the objective once the consistence between the assigned weights to the thematic layers, individually, and the final Map of site suitability were evidenced.
The generation of heliothermal electricity has received increasing attention throughout the world in countries such as Spain, the USA, Germany and many others. In Brazil, this type of energy generation in the form of large projects (above 80 MW) remains unexplored. However, it is known that in the country, there are extensive areas of normal direct irradiation with high intensity and a low seasonality factor, especially in the semiarid regions in Brazil, mainly the North and Northeast of Minas Gerais. Moreover, these Minas Gerais regions have other significant characteristics for the installation of these plants: proximity to transmission lines, flatness, the fact that the respective vegetation is not endangered, a suitable land use profile (availability of land not used in agriculture), low wind speed, low population density, and, most recently, an increase in the demand for local electric energy due to the economic growth above the Brazilian average rate. Furthermore, the introduction of solar plants in that region, due to its distributed nature, will bring development and growth to the region (normally poor) by generating employment and income. This article presents a study of the optimal location of thermoelectric plants in the semiarid regions of Minas Gerais, conducted with Geographical Information System (GIS) technology. GIS consists of a set of specialised resources that allow the manipulation of spatial data, bringing efficiency and agility in the identification of suitable places for the installation of solar plants, while simultaneously enabling the consideration of future scenarios for energy planning, with its respective impact, costs and benefits. The study has identified very promising solar irradiation levels for the electric generation by solar energy, whether thermoelectric or photovoltaic, reaching an annual solar irradiation of 2700 kWh/m² in the summer and in the range of 2200 -2400 kWh/m² on an annual basis. This area includes a vast region in the North/Northeast of the state, which also has continuous and flat regions, with slopes inferior to 3%; in addition, high-quality hydro resources C. Tiba et al. 424are abundant and well distributed. Furthermore, the Minas Gerais region has few areas with high agriculture profile and reduced quantity of protected units. Therefore, generally speaking, the coverage of the transmission lines in that region is suitable. Considering the most relevant aspects mentioned before, and taking as a reference the micro-region limits defined by the IBGE, the following micro-regions were classified as the most promising ones: 1) Janaúba, 2) Januária, 3) Pirapora and Unaí, 4) Pirapora and Paracatu, 5) Curvelo and Três Marias, and 6) Patrocínio and Araxá. Finally, it is important to highlight that this potential might be explored gradually in the medium term, with the shortage of other supply sources, the scale up and readiness of such technologies, as well as the creation of a complex solar-wind-hydro system that leverages the strong complementarity of such resource...
Heliothermic electricity generation is gaining popularity in several countries worldwide. In Brazil, this form of energy generation has not yet been explored for large scale projects. However, the country possesses extensive areas with normal and high-intensity direct irradiation and low seasonality factors, particularly in the semi-arid region of the Brazilian Northeast. The region also presents other important features for setting up such plants: proximity to transmission lines, sufficient flatness, non-endangered vegetation, a suitable land use profile low maximum wind speeds, low population density, and more recently, an increase in the demand for local electric energy due to economic growth above the Brazilian average. A Geographic Information System includes a set of specialised resources that allow us to manipulate spatial data, providing quickness and efficiency in the identification of appropriate places for installing solar power plants while also preparing us for future scenarios, with regards to their impacts, costs and benefits. This article presents a study of the optimal location for thermoelectric power plants in the semi-arid region of the Brazilian Northeast on the scale of 1:10,000,000. All provinces with good potential for the implementation of large-scale concentrating solar power plants are identified. Considering that the installed capacity for parabolic cylindrical concentrators in terrains with a steepness of less than 1% is 43.26 MW/km 2 for systems without storage and 30.82 MW/km 2 for systems with 6 hours of storage, the potential of the southeast region of Piauí alone is huge. Even with the lack of information about the urban areas, terrain continuity, and other variables,utilising only 10% of the identified potential area, or 879.7 km 2 , would result in an installed capacity of 38.1-27.1 GW. This value corresponds to more than 1/3 of the potency of the current Brazilian electric system. If the same calculation is made for the semi-arid region of the Brazilian Northeast, its capacity will be greater than 1000 GW.
How to cite this paper: Tiba, C. and Azevêdo, V.W.B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.