DNA methylation is a key epigenetic modification involved in regulating gene expression and maintaining genomic integrity. Here we inactivated all three catalytically active DNA methyltransferases in human embryonic stem cells (ESCs) using CRISPR/Cas9 genome editing to further investigate their roles and genomic targets. Disruption of DNMT3A or DNMT3B individually, as well as of both enzymes in tandem, creates viable, pluripotent cell lines with distinct effects on their DNA methylation landscape as assessed by whole-genome bisulfite sequencing. Surprisingly, in contrast to mouse, deletion of DNMT1 resulted in rapid cell death in human ESCs. To overcome the immediate lethality, we generated a doxycycline (DOX) responsive tTA-DNMT1* rescue line and readily obtained homozygous DNMT1 mutant lines. However, DOX-mediated repression of the exogenous DNMT1* initiates rapid, global loss of DNA methylation, followed by extensive cell death. Our data provide a comprehensive characterization of DNMT mutant ESCs, including single base genome-wide maps of their targets.
Summary Pluripotent stem cells provide a powerful system to dissect the underlying molecular dynamics that regulate cell fate changes during mammalian development. Here we report the integrative analysis of genome wide binding data for 38 transcription factors with extensive epigenome and transcriptional data across the differentiation of human embryonic stem cells to the three germ layers. We describe core regulatory dynamics and show the lineage specific behavior of selected factors. In addition to the orchestrated remodeling of the chromatin landscape, we find that the binding of several transcription factors is strongly associated with specific loss of DNA methylation in one germ layer and in many cases a reciprocal gain in the other layers. Taken together, our work shows context-dependent rewiring of transcription factor binding, downstream signaling effectors, and the epigenome during human embryonic stem cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.