Introducción: La preeclampsia continúa siendo la primera causa de morbimortalidad perinatal. El conocimiento sobre su etiología molecular se ha incrementado en los últimos años debido al avance en la aplicación de las ciencias “ómicas”. Ello ha llevado a identificar genes candidatos que participarían en su patogénesisObjetivo: Identificar y caracterizar estructural y funcionalmente genes expresados en placenta que se asocian con preeclampsia.Métodos: A partir de una revisión de literatura de los últimos diez años, se identificaron 16 genes cuya expresión en placenta estaba asociada con la patología. Se realizó la minería de datos incluyendo las siguientes variables: número de genes, tamaño de los genes, número de exones codificantes, islas CpG y las familias de los diferentes elementos repetidos en una ventana de 100Kbp. Mediante un análisis bioinformático, usando los diferentes recursos del NCBI (www.ncbi.nlm.nih.gov) y del Genome Browser de UCSC (http://genome.ucsc.edu/). Adicionalmente se usó el portal BioGPS (http://biogps.gnf.org/#goto=welcome), se determinaron los niveles de expresión de cada gen por tejidosResultados: Se registraron diferencias en la cromatina que contiene las familias de elementos no codificantes de los genes asociados en comparación con los controles (Prueba de Kruskall-Wallis, P= 0.0341824). Los genes LEP, EBI3, PROCR, FSTL3, HEXB, INHBA y ENG fueron los que registraron el mayor puntaje z en placentas preeclámpsicas.Conclusión: La aplicación de las herramientas bioinformáticas se convierte en un instrumento potente para el análisis integrado de la expresión de genes y su papel en la patogénesis de la PE. Esto conllevaría a la identificación temprana de mujeres afectadas.
<p>How to formulate and run an element cycling model within a day?<br>How to compare many models with respect to many different diagnostics reliably?&#160;<br>How to allow models to be formulated in different ways?<br>How to make runnable models transparent without implementation details obscuring the scientific content?</p><p>bgc_md2 is an open source python library, available on github and binder.&#160;<br>It provides an extendable set of datatypes that capture the essential properties compartmental models have in common and enables the formulation of a model with a few lines of regular python code. The structure of the model is captured in symbolic math (using sympy) and can be checked during the creation of the model e.g. by drawing a carbon flow diagram or printing the flux equations using the same mathematical symbols used in the publication describing the model.&#160;<br>This can be done long before a complete parameter set for the model is added and the model can be run e.g. for a benchmark.<br>The computation of diagnostic variables both symbolic or numeric is based on the common building blocks which avoids the effort, obscurity and possible inconsistency resulting from a model specific implementation. The difference in available data for different models is addressed by computational graphs.<br>Instead of an inflexible schema for a relational database records can have different entries reflecting the available data.<br>Using the computability graphs the comparable is extended to the computable data. This allows for instance comparing a model described by a collection of fluxes with one described by matrices.<br>bgc_md2 is an extendable library that provides complex and well tested tools for model comparison but does not force the user into a rigid framework.<br>Rather than full automation it aims at flexibility of use within the python universe and can be used interactively in a jupyter notebook as well as in parallel computations on a supercomputer for global data assimilation as we do in a current model inter comparison.<br>Example jupyter notebooks can be explored interactively on binder without installation.&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.