Abstract. Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while conventional sensors typically suffer from small spatial support. With a sensor footprint up to several hectares, cosmic-ray neutron sensing (CRNS) is a modern technology to address that challenge. So far, the CRNS method has typically been applied with single sensors or in sparse national-scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-Alpine Rott headwater catchment in Southern Germany, which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, this network was designed to study root-zone soil moisture dynamics at the catchment scale. The observations of the dense CRNS network were complemented by extensive measurements that allow users to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from unmanned areal systems (UASs), permanent and temporary wireless sensor networks, profile probes, and comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments. As a result, we provide a unique and comprehensive data set to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatiotemporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land–atmosphere exchange processes. The data set is available through the EUDAT Collaborative Data Infrastructure and is split into two subsets: https://doi.org/10.23728/b2share.282675586fb94f44ab2fd09da0856883 (Fersch et al., 2020a) and https://doi.org/10.23728/b2share.bd89f066c26a4507ad654e994153358b (Fersch et al., 2020b).
Abstract. Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms.
Thermal infrared measurements acquired with unmanned aerial systems (UAS) allow for high spatial resolution and flexibility in the time of image acquisition to assess ground surface temperature. Nevertheless, thermal infrared cameras mounted on UAS suffer from low radiometric accuracy as well as low image resolution and contrast hampering image alignment. Our analysis aims to determine the impact of the sun elevation angle (SEA), weather conditions, land cover, image contrast enhancement, geometric camera calibration, and inclusion of yaw angle information and generic and reference pre-selection methods on the point cloud and number of aligned images generated by Agisoft Metashape. We, therefore, use a total amount of 56 single data sets acquired on different days, times of day, weather conditions, and land cover types. Furthermore, we assess camera noise and the effect of temperature correction based on air temperature using features extracted by structure from motion. The study shows for the first time generalizable implications on thermal infrared image acquisitions and presents an approach to perform the analysis with a quality measure of inter-image sensor noise. Better image alignment is reached for conditions of high contrast such as clear weather conditions and high SEA. Alignment can be improved by applying a contrast enhancement and choosing both, reference and generic pre-selection. Grassland areas are best alignable, followed by cropland and forests. Geometric camera calibration hampers feature detection and matching. Temperature correction shows no effect on radiometric camera uncertainty. Based on a valid statistical analysis of the acquired data sets, we derive general suggestions for the planning of a successful field campaign as well as recommendations for a suitable preprocessing workflow.
Abstract. Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while well established sensors typically suffer from a small spatial support. With a sensor footprint up to several hectares, Cosmic-Ray Neutron Sensing (CRNS) is an emerging technology to address that challenge. So far, the CRNS method has typically been applied with single sensors or in sparse national scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-alpine Rott headwater catchment in Southern Germany which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, that network was designed to study root zone soil moisture dynamics at the catchment-scale. The observations of the dense CRNS network were complemented by extensive measurements that allow to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from Unmanned Areal Systems (UAS), permanent and temporary wireless sensor networks, profile probes as well as comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments. As a result, we provide a unique and comprehensive dataset to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatio-temporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land – atmosphere exchange processes. The data set is available through EUDAT, splitted into the two subsets https://doi.org/10.23728/b2share.85fe0f9dac0f48df9215c17e65d1f1e1 (Fersch et al., 2020a) and https://doi.org/10.23728/b2share.93ed99e486904d48a8a6a68083066198 (Fersch et al., 2020b).
It is a critical part of the global climate system, as it stores nearly twice as much carbon as the atmosphere (Vaughan et al., 2013). Permafrost stability is, however, highly affected by climatic change because its conditions and extent are coupled to surface energy and gas fluxes in the form of surface-atmosphere interactions (Vaughan et al., 2013).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.