Research efforts are placing an ever increasing emphasis on identifying signal transduction pathways related to the chemopreventive activity of curcumin. Its anticarcinogenic effects are presumably mediated by the regulation of signaling cascades, including nuclear factor κB (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPK). By modulating signal transduction pathways, curcumin induces apoptosis in malignant cells, thus inhibiting cancer development and progression. Due to the lack of mechanistic insight in the scientific literature, we developed a novel inverse molecular docking protocol based on the CANDOCK algorithm. For the first time, we performed inverse molecular docking of curcumin into a collection of 13,553 available human protein structures from the Protein Data Bank resulting in prioritized target proteins of curcumin. Our predictions were in agreement with the scientific literature and confirmed that curcumin binds to folate receptor β, DNA (cytosine-5)-methyltransferase 3A, metalloproteinase-2, mitogen-activated protein kinase 9, epidermal growth factor receptor and apoptosis-inducing factor 1. We also identified new potential protein targets of curcumin, namely deoxycytidine kinase, NAD-dependent protein deacetylase sirtuin-1 and -2, ecto-5′-nucleotidase, core histone macro-H2A.1, tyrosine-protein phosphatase non-receptor type 11, macrophage colony-stimulating factor 1 receptor, GTPase HRas, aflatoxin B1 aldehyde reductase member 3, aldo-keto reductase family 1 member C3, amiloride-sensitive amine oxidase, death-associated protein kinase 2 and tryptophan-tRNA ligase, that may all play a crucial role in its observed anticancer effects. Moreover, our inverse docking results showed that curcumin potentially binds also to the proteins cAMP-specific 3′,5′-cyclic phosphodiesterase 4D and 17-β-hydroxysteroid dehydrogenase type 10, which provides a new explanation for its efficiency in the treatment of Alzheimer’s disease. We firmly believe that our computational results will complement and direct future experimental studies on curcumin’s anticancer activity as well as on its therapeutic effects against Alzheimer’s disease.
Phosphodiesterase 4 (PDE4), mainly present in immune, epithelial, and brain cells, represents a family of key enzymes for the degradation of cyclic adenosine monophosphate (cAMP), which modulates inflammatory response. In recent years, the inhibition of PDE4 has been proven to be an effective therapeutic strategy for the treatment of neurological disorders. PDE4D constitutes a high-interest therapeutic target primarily for the treatment of Alzheimer’s disease, as it is highly involved in neuroinflammation, learning ability, and memory dysfunctions. In the present study, a thorough computational investigation consisting of molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations based on the linear response approximation (LRA) method was performed to study dietary polyphenols as potential PDE4D inhibitors. The obtained results revealed that curcumin, 6-gingerol, capsaicin, and resveratrol represent potential PDE4D inhibitors; however, the predicted binding free energies of 6-gingerol, capsaicin, and resveratrol were less negative than in the case of curcumin, which exhibited the highest inhibitory potency in comparison with a positive control rolipram. Our results also revealed that the electrostatic component through hydrogen bonding represents the main driving force for the binding and inhibitory activity of curcumin, 6-gingerol, and resveratrol, while the van der Waals component through shape complementarity plays the most important role in capsaicin's inhibitory activity. All investigated compounds form hydrophobic interactions with residues Gln376 and Asn602 as well as hydrogen bonds with nearby residues Asp438, Met439, and Ser440. The binding mode of the studied natural compounds is consequently very similar; however, it significantly differs from the binding of known PDE4 inhibitors. The uncovered molecular inhibitory mechanisms of four investigated natural polyphenols, curcumin, 6-gingerol, capsaicin, and resveratrol, form the basis for the design of novel PDE4D inhibitors for the treatment of Alzheimer’s disease with a potentially wider therapeutic window and fewer adverse side effects.
The isoenzyme of human glutathione transferase P1-1 (hGSTP1-1) is involved in multi-drug resistance (MDR) mechanisms in numerous cancer cell lines. In the present study, the inhibition potency of two curcuminoids and eleven monocarbonyl curcumin analogues against hGSTP1-1 was investigated. Demethoxycurcumin (Curcumin II) and three of the monocarbonyl curcumin analogues exhibited the highest inhibitory activity towards hGSTP1-1 with IC50 values ranging between 5.45 ± 1.08 and 37.72 ± 1.02 μM. Kinetic inhibition studies of the most potent inhibitors demonstrated that they function as non-competitive/mixed-type inhibitors. These compounds were also evaluated for their toxicity against the prostate cancer cells DU-145. Interestingly, the strongest hGSTP1-1 inhibitor, (DM96), exhibited the highest cytotoxicity with an IC50 of 8.60 ± 1.07 μΜ, while the IC50 values of the rest of the compounds ranged between 44.59–48.52 μΜ. Structural analysis employing molecular docking, molecular dynamics (MD) simulations, and binding-free-energy calculations was performed to study the four most potent curcumin analogues as hGSTP1-1 inhibitors. According to the obtained computational results, DM96 exhibited the lowest binding free energy, which is in agreement with the experimental data. All studied curcumin analogues were found to form hydrophobic interactions with the residue Gln52, as well as hydrogen bonds with the nearby residues Gln65 and Asn67. Additional hydrophobic interactions with the residues Phe9 and Val36 as well as π–π stacking interaction with Phe9 contributed to the superior inhibitory activity of DM96. The van der Waals component through shape complementarity was found to play the most important role in DM96-inhibitory activity. Overall, our results revealed that the monocarbonyl curcumin derivative DM96 acts as a strong hGSTP1-1 inhibitor, exerts high prostate cancer cell cytotoxicity, and may, therefore, be exploited for the suppression and chemosensitization of cancer cells. This study provides new insights into the development of safe and effective GST-targeted cancer chemosensitizers.
[6]-Gingerol from ginger has received considerable attention as a potential cancer therapeutic agent because of its chemopreventive and chemotherapeutic effects, as well as its safety. In the current study, we examined [6]-gingerol as a natural scavenger of nine ultimate chemical carcinogens to which we are frequently exposed: glycidamide, styrene oxide, aflatoxin B1 exo-8,9-epoxide, β-propiolactone, ethylene oxide, propylene oxide, 2-cyanoethylene oxide, chloroethylene oxide, and vinyl carbamate epoxide. To evaluate [6]-gingerol efficacy, we expanded our research with the examination of glutathione—the strongest natural scavenger in human cells. The corresponding activation free energies were calculated using Hartree-Fock method with three flexible basis sets and two implicit solvation models. According to our results, [6]-gingerol proves to be an extremely effective scavenger of chemical carcinogens of the epoxy type. On the other hand, with the exception of aflatoxin B1 exo-8,9-epoxide, glutathione represents a relatively poor scavenger, whose efficacy could be augmented by [6]-gingerol. Moreover, our quantum mechanical study of the alkylation reactions of chemical carcinogens with [6]-gingerol and glutathione provide valuable insights in the reaction mechanisms and the geometries of the corresponding transition states. Therefore, we strongly believe that our research forms a solid basis for further computational, experimental and clinical studies of anticarcinogenic properties of [6]-gingerol as well as for the development of novel chemoprophylactic dietary supplements. Finally, the obtained results also point to the applicability of quantum chemical methods to studies of alkylation reactions related to chemical carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.