Coronal holes are usually defined as dark structures seen in the extreme ultraviolet and X-ray spectrum which are generally associated with open magnetic fields. Deriving reliably the coronal hole boundary is of high interest, as its area, underlying magnetic field, and other properties give important hints as regards high speed solar wind acceleration processes and compression regions arriving at Earth. In this study we present a new threshold-based extraction method, which incorporates the intensity gradient along the coronal hole boundary, which is implemented as a user-friendly SSW-IDL GUI. The Collection of Analysis Tools for Coronal Holes (CATCH) enables the user to download data, perform guided coronal hole extraction and analyze the underlying photospheric magnetic field. We use CATCH to analyze non-polar coronal holes during the SDO-era, based on 193 Å filtergrams taken by the Atmospheric Imaging Assembly (AIA) and magnetograms taken by the Heliospheric and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO). Between 2010 and 2019 we investigate 707 coronal holes that are located close to the central meridian. We find coronal holes distributed across latitudes of about ± 60 • , for which we derive sizes between 1.6 × 10 9 and 1.8 × 10 11 km 2. The absolute value of the mean signed magnetic field strength tends towards an average of 2.9 ± 1.9 G. As far as the abundance and size of coronal holes is concerned, we find no distinct trend towards the northern or southern hemisphere. We find that variations in local and global conditions may significantly change Electronic supplementary material The online version of this article (
Context. In this study, we focus on improving EUHFORIA (European Heliospheric Forecasting Information Asset), a recently developed 3D magnetohydrodynamics space weather prediction tool. The EUHFORIA model consists of two parts covering two spatial domains: the solar corona and the inner heliosphere. For the first part, the semiempirical Wang-Sheeley-Arge (WSA) model is used by default; this model employs the potential field source surface and Schatten current sheet models to provide the necessary solar wind plasma and magnetic conditions above the solar surface, at 0.1 AU, which serve as boundary conditions for the inner heliospheric part. Herein, we present the first results of the implementation of an alternative coronal model in EUHFORIA, the so-called MULTI-VP model. Aims. After we replace the default EUHFORIA coronal setup with the MULTI-VP model, we compare their outputs both at 0.1 AU and 1 AU, for test cases involving high speed wind streams (HSSs). We select two distinct cases in which the standard EUHFORIA setup failed to reproduce the HSS plasma and magnetic signatures at Earth to test the performance of MULTI-VP coupled with EUHFORIA-heliosphere. Methods. To understand the quality of modeling with MULTI-VP in comparison with the default coronal model in EUHFORIA, we considered one HSS case during a period of low solar activity and another one during a period of high solar activity. Moreover, the modeling of the two HSSs was performed by employing magnetograms from different providers: one from the Global Oscillation Network Group (GONG) and the second from the Wilcox Space Observatory (WSO). This way, we were able to distinguish differences arising not only because of the different models but also because of different magnetograms. Results. The results indicate that when employing a GONG magnetogram, the combination MULTI-VP+EUHFORIA-heliosphere reproduces the majority of HSS plasma and magnetic signatures measured at L1. On the contrary, the standard WSA+EUHFORIA-heliosphere combination does not capture the arrival of the HSS cases at L1. When employing WSO magnetograms, MULTI-VP+EUHFORIA-heliosphere reproduces the HSS that occurred during the period of high solar activity. However, it is unclear if it models the HSS during the period of low solar activity. For the same magnetogram and periods of time, WSA+EUHFORIA-heliosphere is not able to capture the HSSs of interest. Conclusions. The results show that the accuracy of the simulation output at Earth depends on the choice of both the coronal model and input magnetogram. Nevertheless, a more extensive statistical analysis is necessary to determine how precisely these choices affect the quality of the solar wind predictions.
Context. Understanding the evolution of coronal holes is especially important when studying the high-speed solar wind streams that emanate from them. Slow- and high-speed stream interaction regions may deliver large amounts of energy into the Earth’s magnetosphere-ionosphere system, cause geomagnetic storms, and shape interplanetary space. Aims. By statistically investigating the long-term evolution of well-observed coronal holes we aim to reveal processes that drive the observed changes in the coronal hole parameters. By analyzing 16 long-living coronal holes observed by the Solar Dynamic Observatory, we focus on coronal, morphological, and underlying photospheric magnetic field characteristics, and investigate the evolution of the associated high-speed streams. Methods. We use the Collection of Analysis Tools for Coronal Holes to extract and analyze coronal holes using 193 Å EUV observations taken by the Atmospheric Imaging Assembly as well as line–of–sight magnetograms observed by the Helioseismic and Magnetic Imager. We derive changes in the coronal hole properties and look for correlations with coronal hole evolution. Further, we analyze the properties of the high–speed stream signatures near 1AU from OMNI data by manually extracting the peak bulk velocity of the solar wind plasma. Results. We find that the area evolution of coronal holes shows a general trend of growing to a maximum followed by a decay. We did not find any correlation between the area evolution and the evolution of the signed magnetic flux or signed magnetic flux density enclosed in the projected coronal hole area. From this we conclude that the magnetic flux within the extracted coronal hole boundaries is not the main cause for its area evolution. We derive coronal hole area change rates (growth and decay) of (14.2 ± 15.0)×108 km2 per day showing a reasonable anti-correlation (ccPearson = −0.48) to the solar activity, approximated by the sunspot number. The change rates of the signed mean magnetic flux density (27.3 ± 32.2 mG day−1) and the signed magnetic flux (30.3 ± 31.5 1018 Mx day−1) were also found to be dependent on solar activity (ccPearson = 0.50 and ccPearson = 0.69 respectively) rather than on the individual coronal hole evolutions. Further we find that the relation between coronal hole area and high-speed stream peak velocity is valid for each coronal hole over its evolution, but we see significant variations in the slopes of the regression lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.