Phosphorylation of serine, threonine, and tyrosine is one of the most frequently occurring and crucial post-translational modifications of proteins often associated with important structural and functional changes. We investigated the direct effect of phosphorylation on the intrinsic conformational preferences of amino acids as a potential trigger of larger structural events. We conducted a comparative study of force fields on terminally capped amino acids (dipeptides) as the simplest model for phosphorylation. Our bias-exchange metadynamics simulations revealed that all model dipeptides sampled a great heterogeneity of ensembles affected by introduction of mono- and dianionic phosphate groups. However, the detected changes in populations of backbone conformers and side-chain rotamers did not reveal a strong discriminatory shift in preferences, as could be anticipated for the bulky, charged phosphate group. Furthermore, the AMBER and CHARMM force fields provided inconsistent populations of individual conformers as well as net structural trends upon phosphorylation. Detailed analysis of ensembles revealed competition between hydration and formation of internal hydrogen bonds involving amide hydrogens and the phosphate group. The observed difference in hydration free energy and potential for hydrogen bonding in individual force fields could be attributed to the different partial atomic charges used in each force field and, hence, the different parametrization strategies. Nevertheless, conformational propensities and net structural changes upon phosphorylation are difficult to extract from experimental measurements, and existing experimental data provide limited guidance for force field assessment and further development.
We present a generally applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in an explicit solvent using H2O2 and CH3SO3H in phenol as an example. To address the challenges posed by the complexity of the problem, we resort to a set of data-driven methods and enhanced sampling algorithms. The synergistic application of these techniques makes the first-principle estimation of the chemical properties feasible without renouncing to the use of explicit solvation, involving extensive statistical sampling. Ensembles of neural network (NN) potentials are trained on a set of configurations carefully selected out of preliminary simulations performed at a low-cost density functional tight-binding (DFTB) level. The energy and forces of these configurations are then recomputed at the hybrid density functional theory (DFT) level and used to train the neural networks. The stability of the NN model is enhanced by using DFTB energetics as a baseline, but the efficiency of the direct NN (i.e., baseline-free) is exploited via a multiple-time-step integrator. The neural network potentials are combined with enhanced sampling techniques, such as replica exchange and metadynamics, and used to characterize the relevant protonated species and dominant noncovalent interactions in the mixture, also considering nuclear quantum effects.
The application of machine learning to theoretical chemistry has made it possible to combine the accuracy of quantum chemical energetics with the thorough sampling of finitetemperature fluctuations. To reach this goal, a diverse set of methods has been proposed, ranging from simple linear models to kernel regression and highly nonlinear neural networks. Here we apply two widely different approaches to the same, challenging problem: the sampling of the conformational landscape of polypeptides at finite temperature. We develop a local kernel regression (LKR) coupled with a supervised sparsity method and compare it with a more established approach based on Behler-Parrinello type neural networks. In the context of the LKR, we discuss how the supervised selection of the reference pool of environments is crucial to achieve accurate potential energy surfaces at a competitive computational cost and leverage the locality of the model to infer which chemical environments are poorly described by the DFTB baseline. We then discuss the relative merits of the two frameworks and perform Hamiltonian-reservoir replica-exchange Monte Carlo sampling and metadynamics simulations, respectively, to demonstrate that both frameworks can achieve converged and transferable sampling of the conformational landscape of complex and flexible biomolecules with comparable accuracy and computational cost.
A highly appealing strategy to modulate a catalyst’s activity and/or selectivity in a dynamic and noninvasive way is to incorporate a photoresponsive unit into a catalytically competent molecule. However, the description of the photoinduced conformational or structural changes that alter the catalyst’s intrinsic reactivity is often reduced to a handful of intuitive static representations, which can struggle to capture the complexity of flexible organocatalysts. Here, we show how a comprehensive exploration of the free energy landscape of N-alkylated azobenzene-tethered piperidine catalysts is essential to unravel the conformational characteristics of each configurational state and explain the experimentally observed reactivity trends. Mapping the catalysts’ conformational space highlights the existence of false ON or OFF states that lower their switching ability. Our findings expose the challenges associated with the realization of a reversible steric shielding for the photocontrol of Brønsted basicity of piperidine photoswitchable organocatalysts.
Non-covalent bonding patterns are commonly harvested as a design principle in the field of catalysis, supramolecular chemistry and functional materials to name a few. Yet, their computational description generally neglects finite temperature and environment effects, which promote competing interactions and alter their static gas-phase properties. Recently, neural network potentials (NNPs) trained on Density Functional Theory (DFT) data have become increasingly popular to simulate molecular phenomena in condensed phase with an accuracy comparable to ab initio methods. To date, most applications have centered on solid-state materials or fairly simple molecules made of a limited number of elements. Herein, we focus on the persistence and strength of chalcogen bonds involving a benzotelluradiazole in condensed phase. While the tellurium-containing heteroaromatic molecules are known to exhibit pronounced interactions with anions and lone pairs of different atoms, the relevance of competing intermolecular interactions, notably with the solvent, is complicated to monitor experimentally but also challenging to model at an accurate electronic structure level. Here, we train direct and baselined NNPs to reproduce hybrid DFT energies and forces in order to identify what are the most prevalent non-covalent interactions occurring in a solute-Cl$^-$-THF mixture. The simulations in explicit solvent highlight competition with chalcogen bonds formed with the solvent and the short-range directionality of the interaction with direct consequences for the molecular properties in the solution. The comparison with other potentials (e.g., AMOEBA, direct NNP and continuum solvent model) also demonstrates that baselined NNPs offer a reliable picture of the non-covalent interaction interplay occurring in solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.