Mitochondrial nucleoids consist of several different groups of proteins, many of which are involved in essential cellular processes such as the replication, repair and transcription of the mitochondrial genome. The eukaryotic, ATP-dependent protease Lon is found within the central nucleoid region, though little is presently known about its role there. Aside from its association with mitochondrial nucleoids, human Lon also specifically interacts with RNA. Recently, Lon was shown to regulate TFAM, the most abundant mtDNA structural factor in human mitochondria. To determine whether Lon also regulates other mitochondrial nucleoid- or ribosome-associated proteins, we examined the in vitro digestion profiles of the Saccharomyces cerevisiae TFAM functional homologue Abf2, the yeast mtDNA maintenance protein Mgm101, and two human mitochondrial proteins, Twinkle helicase and the large ribosomal subunit protein MrpL32. Degradation of Mgm101 was also verified in vivo in yeast mitochondria. These experiments revealed that all four proteins are actively degraded by Lon, but that three of them are protected from it when bound to a nucleic acid; the Twinkle helicase is not. Such a regulatory mechanism might facilitate dynamic changes to the mitochondrial nucleoid, which are crucial for conducting mitochondrial functions and maintaining mitochondrial homeostasis.
The major role of mitochondria is to provide cells with energy, but no less important are their roles in responding to various stress factors and the metabolic changes and pathological processes that might occur inside and outside the cells. The post-translational modification of proteins is a fast and efficient way for cells to adapt to ever changing conditions. Phosphorylation is a post-translational modification that signals these changes and propagates these signals throughout the whole cell, but it also changes the structure, function and interaction of individual proteins. In this review, we summarize the influence of kinases, the proteins responsible for phosphorylation, on mitochondrial biogenesis under various cellular conditions. We focus on their role in keeping mitochondria fully functional in healthy cells and also on the changes in mitochondrial structure and function that occur in pathological processes arising from the phosphorylation of mitochondrial proteins.
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.