The mammalian spinal cord does not regenerate motor neurons that are lost as a result of injury or disease. Here we demonstrate that adult zebrafish, which show functional spinal cord regeneration, are capable of motor neuron regeneration. After a spinal lesion, the ventricular zone shows a widespread increase in proliferation, including slowly proliferating olig2-positive (olig2 ϩ ) ependymo-radial glial progenitor cells. Lineage tracing in olig2:green fluorescent protein transgenic fish indicates that these cells switch from a gliogenic phenotype to motor neuron production. Numbers of undifferentiated small HB9 ϩ and islet-1 ϩ motor neurons, which are double labeled with the proliferation marker 5-bromo-2-deoxyuridine (BrdU), are transiently strongly increased in the lesioned spinal cord. Large differentiated motor neurons, which are lost after a lesion, reappear at 6 -8 weeks after lesion, and we detected ChAT ϩ /BrdU ϩ motor neurons that were covered by contacts immunopositive for the synaptic marker SV2. These observations suggest that, after a lesion, plasticity of olig2 ϩ progenitor cells may allow them to generate motor neurons, some of which exhibit markers for terminal differentiation and integration into the existing adult spinal circuitry.
Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.
In contrast to mammals, the spinal cord of adult zebrafish has the capacity to reinitiate generation of motor neurons after a lesion. Here we show that genes involved in motor neuron development, i.e., the ventral morphogen sonic hedgehog a (shha), as well as the transcription factors nkx6.1 and pax6, together with a Tg(olig2:egfp) transgene, are expressed in the unlesioned spinal cord of adult zebrafish. Expression is found in ependymoradial glial cells lining the central canal in ventrodorsal positions that match expression domains of these genes in the developing neural tube. Specifically, Tg(olig2:egfp) ϩ ependymoradial glial cells, the adult motor neuron progenitors (pMNs), coexpress Nkx6.1 and Pax6, thus defining an adult pMN-like zone. shha is expressed in distinct ventral ependymoradial glial cells. After a lesion, expression of all these genes is strongly increased, while relative spatial expression domains are maintained. In addition, expression of the hedgehog (hh) receptors patched1 and smoothened becomes detectable in ependymoradial glial cells including those of the pMN-like zone. Cyclopamine-induced knock down of hh signaling significantly reduces ventricular proliferation and motor neuron regeneration. Expression of indicator genes for the FGF and retinoic acid signaling pathways was also increased in the lesioned spinal cord. This suggests that a subclass of ependymoradial glial cells retain their identity as motor neuron progenitors into adulthood and are capable of reacting to a sonic hedgehog signal and potentially other developmental signals with motor neuron regeneration after a spinal lesion.
The zebrafish has become an important model organism to study myelination during development and after a lesion of the adult central nervous system (CNS). Here, we identify Claudin k as a myelin-associated protein in zebrafish and determine its localization during development and adult optic nerve regeneration. We find Claudin k in subcellular compartments consistent with location in autotypic tight junctions of oligodendrocytes and myelinating Schwann cells. Expression starts in the hindbrain at 2 days (mRNA) and 3 days (protein) postfertilization and is maintained in adults. A newly generated claudin k:green fluorescent protein (GFP) reporter line allowed us to characterize oligodendrocytes in the adult retina that express Claudin k and olig2, but not P0 and uniquely only form loose wraps of membrane around axons. After a crush of the adult optic nerve, Claudin k protein levels were first reduced and then recovered within 4 weeks postlesion, concomitant with optic nerve myelin de- and regeneration. During optic nerve regeneration, oligodendrocytes, many of which were newly generated, repopulated the lesion site and exhibited increasing morphological complexity over time. Thus, Claudin k is a novel myelin-associated protein expressed by oligodendrocytes and Schwann cells from early stages of wrapping and myelin formation in zebrafish development and adult regeneration, suggesting important functions of the gene for myelin formation and maintenance. Our Claudin k antibodies and claudin k:GFP reporter line represent excellent ways to visualize oligodendrocyte and Schwann cell differentiation in vivo.
Zebrafish display widespread and pronounced adult neurogenesis, which is fundamental for their regeneration capability after central nervous system injury. However, the cellular identity and the biological properties of adult newborn neurons are elusive for most brain areas. Here, we have used short-term lineage tracing of radial glia progeny to prospectively isolate newborn neurons from the her4.1 + radial glia lineage in the homeostatic adult forebrain. Transcriptome analysis of radial glia, newborn neurons and mature neurons using single cell sequencing identified distinct transcriptional profiles, including novel markers for each population. Specifically, we detected two separate newborn neuron types, which showed diversity of cell fate commitment and location. Further analyses showed that these cell types are homologous to neurogenic cells in the mammalian brain, identified neurogenic commitment in proliferating radial glia and indicated that glutamatergic projection neurons are generated in the adult zebrafish telencephalon. Thus, we prospectively isolated adult newborn neurons from the adult zebrafish forebrain, identified markers for newborn and mature neurons in the adult brain, and revealed intrinsic heterogeneity among adult newborn neurons and their homology with mammalian adult neurogenic cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.