The body of evidence did not allow us to reach a clear conclusion regarding the efficacy of the interventions on postpartum iron deficiency anaemia. The quality of evidence was low.Clinical outcomes were rarely reported. Laboratory values may not be reliable indicators for efficacy, as they do not always correlate with clinical treatment effects. It remains unclear which treatment modality is most effective in alleviating symptoms of postpartum anaemia.Intravenous iron was superior regarding gastrointestinal harms, however anaphylaxis and cardiac events occurred and more data are needed to establish whether this was caused by intravenous iron.The clinical significance of some temporarily improved fatigue scores in women treated with blood transfusion is uncertain and this modest effect should be balanced against known risks, e.g. maternal mortality (not reported) and maternal immunological sensitisation, which can potentially harm future pregnancies.When comparing oral iron to placebo it remains unknown whether efficacy (relief of anaemia symptoms) outweighs the documented gastrointestinal harms.We could not draw conclusions regarding erythropoietin treatment due to lack of evidence.Further research should evaluate treatment effect through clinical outcomes, i.e. presence and severity of anaemia symptoms balanced against harms, i.e. survival and severe morbidity.
There was no effect of multi-professional obstetric skills training on the rate of RBC transfusion for PPH. The unchanged long delay in handling a retained placenta indicates a need for multi-disciplinary training in collaboration with staff from anesthesiology and the operation theater.
The eye manifestations of congenital toxoplasmosis were investigated in 38 infants and children. Diagnosis of the congenital ocular lesions was established clinically, using also X-ray, computed tomography and ultrasonography, and confirmed by two immunodiagnostic techniques. Infants and children were examined when one or more characteristic manifestations of ophthalmic disorders were present. Typical symptoms and signs can present at birth or appear later in life. The multiplicity of clinical manifestations is characteristic of the disease. The most common symptom was chorioretinitis (92%), associated in 71% of the cases with other ocular lesions, and the second most common symptom was microphthalmia and strabismus. The inflammatory process also involved the anterior segment of the eye: iridocyclitis, cataract, glaucoma. Other rare findings were hydrocephalus, calcification in the brain, paresis, epilepsy and diminished visual acuity. The study showed that transplacental transmission of Toxoplasma to the fetus can have severe clinical consequences and terminate in fatal ocular impairment.
Due to the necessity of iron for a variety of cellular functions, the developing mammalian organism is vulnerable to iron deficiency, hence causing structural abnormalities and physiological malfunctioning in organs, which are particularly dependent on adequate iron stores, such as the brain. In early embryonic life, iron is already needed for proper development of the brain with the proliferation, migration, and differentiation of neuro-progenitor cells. This is underpinned by the widespread expression of transferrin receptors in the developing brain, which, in later life, is restricted to cells of the blood–brain and blood–cerebrospinal fluid barriers and neuronal cells, hence ensuring a sustained iron supply to the brain, even in the fully developed brain. In embryonic human life, iron deficiency is thought to result in a lower brain weight, with the impaired formation of myelin. Studies of fully developed infants that have experienced iron deficiency during development reveal the chronic and irreversible impairment of cognitive, memory, and motor skills, indicating widespread effects on the human brain. This review highlights the major findings of recent decades on the effects of gestational and lactational iron deficiency on the developing human brain. The findings are correlated to findings of experimental animals ranging from rodents to domestic pigs and non-human primates. The results point towards significant effects of iron deficiency on the developing brain. Evidence would be stronger with more studies addressing the human brain in real-time and the development of blood biomarkers of cerebral disturbance in iron deficiency. Cerebral iron deficiency is expected to be curable with iron substitution therapy, as the brain, privileged by the cerebral vascular transferrin receptor expression, is expected to facilitate iron extraction from the circulation and enable transport further into the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.