IntroductionThe typical symptoms of Alzheimer’s disease (AD) are cognitive impairment, disrupted spatial orientation, behavioral and psychiatric abnormalities, and later motor deficits. Neuropathologically, AD is characterized by deposits of pathological forms of endogenous proteins – amyloid-β, and neurofibrillary tau protein pathology. The latter closely correlates with brain atrophy and clinical impairment. Pharmacological therapies for these pathologies are largely absent, raising the question whether non-pharmacological interventions could be efficacious. Environmental factors can play a role in the manifestation of AD. It is unknown whether enriched environment (EE) can ameliorate the propagation of protein aggregates or their toxic components.MethodsWe injected insoluble tau extracts from human brains with AD (600 or 900 ng per animal) into hippocampi of SHR72 transgenic rats that express non-mutated truncated human tau 151-391/4R, but usually do not develop hippocampal tangles. The rats had either standard housing, or could access an EE 5×/week for 3 months. Behavioral analysis included the Morris Water Maze (MWM). Histological analysis was used to assess the propagation of tau pathology.ResultsAnimals exposed to EE performed better in the MWM (spatial acquisition duration and total distance, probe test); unexposed animals improved over the course of acquisition trials, but their mean performance remained below that of the EE group. Enriched environment abrogated tau propagation and hippocampal tangle formation in the 600 ng group; in the 900 ng group, tangle formation was ∼10-fold of the 600 ng group, and unaffected by EE.ConclusionEven a small difference in the amount of injected human AD tau can cause a pronounced difference in the number of resulting tangles. EE leads to a noticeably better spatial navigation performance of tau-injected animals. Furthermore, EE seems to be able to slow down tau pathology progression, indicating the possible utility of similar interventions in early stages of AD where tangle loads are still low.
Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique used to characterize fibrous structures such as white matter in the central nervous system, including normal and spinal cord injury (SCI) conditions. Our aim was to evaluate the effect of alginate treatment in the rat SCI by DTI parametric measures. Ex vivo DTI data were collected by spin echo sequence with following parameters TR/TE: 2500 ms/32 ms and b-value of 1500 s/mm 2 . Main significant changes were found in fractional anisotropy (FA), and radial diffusivity (RD), between the saline-and alginatetreated group at the level of individual sections and whole spinal cord. Results indicate that ex vivo DTI can be used as a tool for tissue structure characterisation and both FA and RD as promising prognostic parameters of SCI treatment.
Spreading of tau pathology to anatomical distinct regions in Alzheimer's disease (AD) is associated with progression of the disease. Studies in recent decade have strived to understand the processes involved in this characteristic spread. We recently showed that AD-derived insoluble tau seeds are able to initiate neurofibrillary pathology in transgenic rodent model of tauopathy.In the present study, we pursued to identify the molecular changes that govern the induction and propagation of tau pathology on the transcriptomic level. We first show that microglia in vicinity to AD-Tau-induced pathology has phagocytic morphology when compared to PBS-injected group. On transcriptomic level, we observed deregulation of 15 genes 3-month post AD-Tau seeds inoculation. Integrated bioinformatic analysis identified 31 significantly enriched pathways. Amongst these, the inflammatory signalling pathway mediated by cytokine and chemokine networks, along with, toll-like receptor and JAK-STAT signalling were the most dominant. Furthermore, the enriched signalling also involved the regulation of autophagy, mitophagy and endoplasmic reticulum stress pathways. To our best of knowledge, the study is the first to investigate the transcriptomic profile of AD-Tau seed-induced pathology in hippocampus of transgenic model of tauopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.