The detection of a signal in noise is enhanced when the masking noise is coherently modulated over a wide range of frequencies. This phenomenon, known as comodulation masking release (CMR), has been attributed to across-channel processing; however, the relative contribution of different stages in the auditory system to such across-channel processing is unknown. It has been hypothesized that wideband or lateral inhibition may underlie a physiological correlate of CMR. To further test this hypothesis, we have measured the responses of single units from the dorsal cochlear nucleus in which wideband inhibition is particularly pronounced. Using a sinusoidally amplitude-modulated tone at the best frequency of each unit as a masker, a pure-tone signal was added in the dips of the masker modulation. Flanking bands (FBs, also amplitude-modulated pure tones) were positioned to fall within the inhibitory sidebands of the receptive field of the unit. The FBs were either in phase (comodulated) or out of phase (codeviant) with the on-frequency masker. For the majority of units, the addition of the comodulated FBs produced a strong reduction in the response to the masker modulation, making the signal more salient in the poststimulus time histograms. The change in spike rate in response to the signal between the masker and signal-plus-masker conditions was greatest for the comodulated condition for 29 of 45 units. These results are consistent with the hypothesis that wideband inhibition may play a role in across-channel processing at an early stage in the auditory pathway.
It has been suggested that the dorsal cochlear nucleus (DCN) is involved in the temporal representation of both envelope periodicity and pitch. This hypothesis is tested using iterated rippled noise (IRN), which is generated by a cascade of delay and add [IRN(+)] or delay and subtract [IRN(-)] operations. The autocorrelation functions (ACFs) of the waveform and the envelope of IRN(+) have a first peak at the delay, which corresponds to the perceived pitch of the IRN. With the same delay, the pitch of IRN(-) is generally an octave lower than for IRN(+). This is reflected in a first peak at twice the delay in the ACF of the waveform for IRN(-). In contrast, for identical delays, the ACF of the envelope for both IRN(-) and IRN(+) is the same. Thus the use of IRN allows the distinction between envelope- or fine-structure sensitivity. Recordings were made from 135 single units (BFs <5 kHz) in the DCN of the anesthetized guinea pig using IRN with delays ranging from 1 to 32 ms. In our sample 42% were sensitive to the periodicity of IRN(+) and were tuned to a particular delay in their first-order interspike interval histograms (ISIHs). This tuning was highly correlated with their response to white noise. Most units with best frequencies (BFs) <500 Hz show a different all-order ISIH for IRN(+) and IRN(-), which corresponds to the perceived pitch difference, whereas units with higher BFs show a similar response to IRN(+) and IRN(-). The results indicate that low-frequency units (BF <500 Hz) in the DCN may be involved in the representation of the waveform fine structure, although units with BFs >500 Hz are able to encode only the envelope periodicity of broadband IRN in their temporal discharge characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.