The prevalence, the prognostic effect, and interaction with other molecular markers of DNMT3A mutations was studied in 415 patients with acute myeloid leukemia (AML) younger than 60 years. We show mutations in DNMT3A
Rotational transformations have traditionally played a key role in enhancing the interpretability of factor analysis via post-hoc modifications of the factor model orientation. Regularization methods also serve to achieve this goal by prioritizing sparse loading matrices. In this work, we cross-fertilize these two paradigms within a unifying Bayesian framework. Our approach deploys intermediate factor rotations throughout the learning process, greatly enhancing the effectiveness of sparsity inducing priors. These automatic rotations to sparsity are embedded within a PXL-EM algorithm, a Bayesian variant of parameter-expanded EM for posterior mode detection. By iterating between soft-thresholding of small factor loadings and transformations of the factor basis, we obtain (a) dramatic accelerations, (b) robustness against poor initializations and (c) better oriented sparse solutions. For accurate recovery of factor loadings, we deploy a two-component refinement of the Laplace prior, the spike-and-slab LASSO prior. This prior is coupled with the Indian Buffet Process (IBP) prior to avoid the pre-specification of the factor cardinality. The ambient dimensionality is learned from the posterior, which is shown to reward sparse matrices. Our deployment of PXL-EM performs a dynamic posterior exploration, outputting a solution path indexed by a sequence of spike-and-slab priors. A companion criterion, motivated as an integral lower bound, is provided to effectively select the best recovery. The potential of the proposed procedure is demonstrated on both simulated and real high-dimensional data, which would render posterior simulation impractical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.