BackgroundReliable on site classification of resected tumor specimens remains a challenge. Implementation of high-resolution confocal laser endoscopic techniques (CLEs) during fluorescence-guided brain tumor surgery is a new tool for intraoperative tumor tissue visualization. To overcome observer dependent errors, we aimed to predict tumor type by applying a deep learning model to image data obtained by CLE.MethodsHuman brain tumor specimens from 25 patients with brain metastasis, glioblastoma, and meningioma were evaluated within this study. In addition to routine histopathological analysis, tissue samples were stained with fluorescein ex vivo and analyzed with CLE. We trained two convolutional neural networks and built a predictive level for the outputs.ResultsMultiple CLE images were obtained from each specimen with a total number of 13,972 fluorescein based images. Test accuracy of 90.9% was achieved after applying a two-class prediction for glioblastomas and brain metastases with an area under the curve (AUC) value of 0.92. For three class predictions, our model achieved a ratio of correct predicted label of 85.8% in the test set, which was confirmed with five-fold cross validation, without definition of confidence. Applying a confidence rate of 0.999 increased the prediction accuracy to 98.6% when images with substantial artifacts were excluded before the analysis. 36.3% of total images met the output criteria.ConclusionsWe trained a residual network model that allows automated, on site analysis of resected tumor specimens based on CLE image datasets. Further in vivo studies are required to assess the clinical benefit CLE can have.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.