PURPOSE To investigate the retention loads of differently fabricated secondary telescopic polyetheretherketone (PEEK) crowns on cobalt-chromium primary crowns with different tapers. MATE-RIALS AND METHODS Cobalt-chromium primary crowns with 0°, 1°, and 2°tapers were constructed, milled, and sintered. Corresponding secondary crowns were fabricated by milling, pressing from pellets, and pressing from granules. For these nine test groups, the pull-off tests of each crown combination were performed 20 times, and the retention loads were measured (Zwick 1445, 50 mm/min). Data were analyzed using linear regression, covariance analysis, mixed models, Kruskal-Wallis, and Mann-Whitney U-test, together with the Benferroni-Holm correction. RESULTS The mixed models covariance analysis reinforced stable retention load values (p = 0.162) for each single test sequence. There was no interaction between the groups and the separation cycles (p = 0.179). Milled secondary crowns with 0°showed the lowest mean retention load values compared to all tested groups (p = 0.003) followed by those pressed form pellets with 1°. Regarding the different tapers, no effect of manufacturing method on the results was observed within 1°and 2°groups (p = 0.540; p = 0.052); however, among the 0°groups, the milled ones showed significantly the lowest retention load values (p = 0.002). Among the manufacturing methods, both pressed groups showed no impact of taper on the retention load values (p > 0.324 and p > 0.123, respectively), whereas among the milled secondary crowns, the 0°taper showed significantly lower retention load values than the 1°and 2°taper (p < 0.002). CONCLUSION Based on these results, telescopic crowns made of PEEK seem to show stable retention load values for each test sequence; however, data with thermo-mechanical aging are still required. In addition, further developments in CAD/CAM manufacturing of PEEK materials for telescopic crowns are warranted, especially for 0°. showed the lowest mean retention load values compared to all tested groups (p=0.003) followed by those pressed form pellets with 1°. Regarding the different tapers, no effect of manufacturing method on the results was observed within 1° and 2° groups (p=0.540 and p=0.052). However, among the 0° groups, the milled ones showed significantly the lowest retention load values (p=0.002). Among the manufacturing method both pressed groups showed no impact of taper on the retention load values (p>0.324 and p>0.123, respectively) whereas among the milled secondary crowns, the 0° taper showed significantly lower retention load values than the 1° and 2° taper (p<0.002). Conclusion
To assess the retention force between primary and secondary PEEK crowns made by different fabrication methods. Primary crowns with different tapers (0°, 1°, and 2°) were fabricated and secondary crowns that were either milled from breCam BioHPP blanks, pressed from pellets (BioHPP Pellet) or granules (BioHPP Granulat) were produced. Each specimen was measured 20 times in a pulloff-test and results were analyzed using 2-/1-way ANOVA and linear regression analyses (p<0.05). Within 0° tapered crowns milled secondary crowns showed lower retention forces compared to pressed pellet crowns. Crowns with a 1° taper, however, showed no impact of the fabrication method on retention force. At a 2° taper, granular pressed crowns displayed lower values than their milled counterparts. Within the milled group, a 0° taper showed lower retention values than the higher tapers, whereas in the pressed groups, no impact of taper angle on retention force was found.
In prosthetic dentistry, double crown systems have proved their suitability as retainers for removable partial dentures. However, investigations in this context, regarding polyetheretherketone, are scarce. Therefore, the aim of this study was to test the retention force (RF) between polyetheretherketone (PEEK) primary and cobalt-chromium (CoCr), zirconia (ZrO2) and galvanic (GAL) secondary crowns with three different tapers. Primary PEEK-crowns were milled with the tapers 0°, 1°, and 2° (n = 10/taper, respectively). Afterwards, 90 secondary crowns were fabricated: (i) 30 CoCr-crowns milled from Ceramill Sintron (AmannGirrbach, Koblach, Austria) (n = 10/taper), (ii) 30 ZrO2-crowns milled from Ceramill ZI (AmannGirrbach, Koblach, Austria) (n = 10/taper), and (iii) 30 GAL-crowns made using electroforming (n = 10/taper). RF was measured in a pull-off test (20 pull-offs/specimen) and data were analyzed using 2-/1-way Analysis of Variance (ANOVA) followed by the Tukey-Honestly Significant Difference (HSD) post hoc test and linear regression analyses (p < 0.05). The measured mean RF values ranged between 9.6 and 38.2 N. With regard to the 0°, 1°, and 2° tapered crowns, no statistically significant differences between CoCr and ZrO2 were observed (p > 0.141). At 0° taper, no differences in retention forces between GAL, CrCr, and ZrO2 crowns were found (p = 0.075). However, at 1° and 2° taper, lower RF for GAL-crowns were observed (p < 0.009, p < 0.001, respectively). According to this laboratory study, PEEK might be a suitable material for primary crowns, regardless of the taper and the material of secondary crown. Long-term results, however, are still necessary.
This study investigates the retention load (RL) between ZrO2 primary crowns and secondary polyetheretherketone (PEEK) crowns made by different fabrication methods with three different tapers. Standardized primary ZrO2 crowns were fabricated with three different tapers: 0°, 1°, and 2° (n = 10/group). Ten secondary crowns were fabricated (i) milled from breCam BioHPP blanks (PM); (ii) pressed from industrially fabricated PEEK pellets (PP) (BioHPP Pellet); or (iii) pressed from granular PEEK (PG) (BioHPP Granulat). One calibrated operator adjusted all crowns. In total, the RL of 90 secondary crowns were measured in pull-off tests at 50 mm/min, and each specimen was tested 20 times. Two- and one-way ANOVAs followed by a Scheffé’s post-hoc test were used for data analysis (p < 0.05). Within crowns with a 0° taper, the PP group showed significantly higher retention load values compared with the other groups. Among the 1° taper, the PM group presented significantly lower retention loads than the PP group. However, the pressing type had no impact on the results. Within the 2° taper, the fabrication method had no influence on the RL. Within the PM group, the 2° taper showed significantly higher retention load compared with the 1° taper. The taper with 0° was in the same range value as the 1° and 2° tapers. No impact of the taper on the retention value was observed between the PP groups. Within the PG groups, the 0° taper presented significantly lower RL than the 1° taper, whereas the 2° taper showed no differences. The fabrication method of the secondary PEEK crowns and taper angles showed no consistent effect within all tested groups.
This study aimed to examine and compare the retention load values (RL) of different telescopic crown assemblies (Y-TZP and CoCr primary crowns with electroformed and Y-TZP secondary crowns each) with three different taper angles (0°, 1° and 2°). Thirty Y-TZP primary crowns with electroformed gold copings (Z/G group) and Y-TZP secondary crowns (Z/Z group) and 30 CoCr primary crowns with electroformed gold copings (C/G group) and Y-TZP secondary crowns (C/Z group), each with taper angles of 0°, 1° and 2°, were fabricated, respectively. With the exception of the electroformed gold copings, all specimens were Computer-Aided-Design/Computer-Aided-Manufacturing (CAD/CAM)-milled, then sintered and afterwards manually adapted. In order to stabilize the gold copings, they were fixed in a tertiary structure. The secondary crowns were constructed with a hook, which ensured self-alignment with an upper chain. Afterwards, 20 pull-off test cycles were performed in a universal testing machine under artificial saliva and after weighing the secondary crowns with a 5 kg object for 20 s. Data were analyzed by one-way and two-way Analysis of Variance (ANOVA). C/Z with 1° showed higher (p = 0.009) RL than 0° and 2° tapers. C/G at 1° also showed higher (p = 0.001) RL than at tapers of 0° and 2°. Z/G and C/G at 0° showed lower RL than Z/Z and C/Z (p < 0.001). Primary crowns had no impact on the 0° group. Z/G showed lower RL as compared to C/Z within the 1° group (p = 0.007) and Z/Z in the 2° group (p = 0.006). The primary crown material had no influence on RL. Electroformed copings showed lower RL. Further investigations for 1° as well as for the long-term performance after thermomechanical aging are necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.