Most cellulose-based materials' manufacturing processes include processing this biopolymer in an aqueous medium. Sorption properties depend on cellulose supramolecular structure and nature of its change during moistening. Plenty of researchers' efforts have been directed to the development of scientifically sound and commercially reliable processes over the past decade for the cellulose fibers' dispersion in an aqueous medium. Therefore, it needs a more detailed study of the cellulose-water system components' interaction. This study presents the supramolecular structure and sorption properties of native cotton cellulose research results obtained by 1 H NMR relaxation, spectroscopy and sorption measurements. Hydrophilic properties of cellulose as an adsorbent are characterized, taking into account a porous system between its structural elements. We examine in detail water adsorption on the active surface of cellulose Iβ. We also demonstrate the approach for determining the entropy change in the first two layers of adsorbed water and estimate this value increased during adsorption. Cellulose moistening is accompanied by the decomposition of macrofibrils into microfibrils and is manifested in a crystallinity decrease and a specific surface area growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.