Floodplain restoration measures are among the most well-known nature-based solutions for flood risk reduction but practitioners see their limitations in comparison to technical measures when considering both their effectiveness and profitability. The aim of this study is to show the co-benefits (besides flood risk reduction) of floodplain restoration and handle them in terms of monetized ecosystem services (ES). Our work focused on six ES groups for three study areas in the Danube catchment along the Krka, Morava, and Danube rivers. ES mapping through stakeholder engagement is also considered. We applied the methodologies suggested in the Toolkit for Ecosystem Service Site-Based Assessment (TESSA) complemented with alternative methodologies (e.g., questionnaires on social media). Results show annual combined benefits of floodplain restoration in a range from 237,000 USD2019 at Krka to 3.1 million USD2019 at Morava, suggesting the utility of ES assessment. The combination of stakeholder workshops and the TESSA guidelines, as well as the newly developed methods, were all central tools to provide decision-makers with arguments to use nature-based solutions for an integrated and holistic riparian land use management.
<p>The presentation will summarize the main findings of the chapter &#8220;Water&#8221;[1] of the report &#8220;Climate and Environmental Change in the Mediterranean Basin &#8211; Current Situation and Risks for the Future&#8221;. This report was published in November 2020 and prepared by 190 scientists from 25 countries, who belong to the scientific network &#8220;Mediterranean Experts on Climate and Environmental Change&#8221;.</p><p>Water resources in the Mediterranean are scarce, unevenly distributed and often mismatching human and environmental needs. Approx. 180 million people in the southern and eastern Mediterranean countries suffer from water scarcity (<1000 m<sup>3</sup> capita<sup>-1</sup> yr<sup>-1</sup>). The main water use is for agriculture, and more specifically on the southern and eastern rim. Water demand for both tourism and agriculture peak in summer, potentially enhancing conflicts in the future. Municipal water use is particularly constrained in the south and will likely be exacerbated in the future by demographic and migration phenomena. Northern countries face additional risks in flood prone areas where urban settlements are rapidly increasing.</p><p>Climate change, in combination with demographic and socio-economic developments, has mainly negative consequences for the water cycle in the Mediterranean Basin, including reduced runoff and groundwater recharge, increased crop water requirements, increased conflicts among users, and increased risk of overexploitation and degradation. These impacts will be particularly severe for global warming higher than 2&#176;C.</p><p>Adequate water supply and demand management offers some options to cope with risks. Technical solutions are available for improving water use efficiency and productivity, and increasing reuse. Seawater desalination is increasingly used as adaptation measure to reduce (potable) water scarcity in dry Mediterranean countries, despite known drawbacks in terms of environmental impacts and energy requirements. Promising solar technologies are under development, potentially reducing emissions and costs. Reuse of wastewater is a solution for agriculture and industrial activities but also recharge of aquifers. Inter-basin transfers may lead to controversies and conflicts. Construction of dams contributes to the reduction of water and energy scarcities, but with trade-offs in terms of social and environmental impacts.</p><p>Overall, water demand management, which increases water use efficiency and reduces water losses, is crucial for water governance for a sustainable development. Maintaining Mediterranean diet or coming back to it on the basis of locally produced foods and reducing food wastes may save water but also carbon emissions while having nutritional and health benefits.</p><div><br><div> <p>[1] <strong>Fader M.</strong>, Giupponi C., Burak S., Dakhlaoui H., Koutroulis A., Lange M.A., Llasat M.C., Pulido-Velazquez D., Sanz-Cobe&#241;a A. (2020): Water. In: Climate and Environmental Change in the Mediterranean Basin &#8211; Current Situation and Risks for the Future. First Mediterranean Assessment Report [Cramer W, Guiot J, Marini K (eds.)] Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, 57pp, in press. Download</p> </div> </div>
<p>Limited knowledge on current and future processes as well as data scarcity pose a major challenge when it comes to the evaluation of adaptation strategies towards flooding. Current simulation approaches often lack the flexibility do deal with the inherit dynamics of future development (land use, urban growth, re-development of slum areas, infrastructure construction, etc.) in coastal cities and the resulting changes in flood hazard, exposure and vulnerability whilst facing a lack of sufficient data. Therefore, we developed a modelling approach which is able to integrate future dynamics in the three risk components, hazard, exposure and vulnerability under the uncertainties arising from lacking data as well as limited knowledge. We used Mumbai, India as a first case study to combine Urban Structure Types with Bayesian Networks (BN) and to assess pluvial flooding. BN structures are defined by process understanding supported by existing models, literature and expert evaluations. The quantification of the BNs is done by using urban structure types as proxies for relevant parameters/nodes where data is not available, like the distribution and capacity drainage infrastructure and its condition or the degree of imperviousness of certain areas. This is justified by the assumption that the appearance and the processes in urban structure types are similar. However, the probabilistic definition of nodes in a BN allows to account for the variability within an urban structure type class. As a first step, the approach was set up for the hazard component of risk. Here first results of the simulation of pluvial flooding are shown and validated against flood hotspots reported by the government of Mumbai. The simulation approach reproduced the flooding hotspots, however it has a great sensitivity towards certain parameters, especially towards the digital elevation model and the condition of the drainage infrastructure. In a next step BNs for multi-hazard evaluation and vulnerability assessment will be developed and linked, i.e. fluvial and coastal flooding as well as social vulnerability. The integration of different risk components and the flexibility of the approach help to assess the effect of individual and combinations of soft and hard adaptation measures on future flood risk.</p>
<p>Countries located in the Danube River Basin (DRB) are in danger of being affected by major catastrophic floods along the Danube and its tributaries. Floodplain restoration measures are among win-win nature-based solutions (NBS) for flood risk reduction but practitioners see their limitations in comparison to technical measures, when looking at their effectiveness and profitability. Within the framework of the EU Interreg Danube Floodplain project, this presentation shows the benefits of floodplain restoration in terms of monetized ecosystem services (ES). Our work focused on multiple ES groups for four study areas in the Danube catchment, located in Czech Republic, Romania, Serbia, and Slovenia. This was done with the help of stakeholder engagement, hydrodynamic models results, and the Toolkit for Ecosystem Service Site-Based Assessment (TESSA). Moreover, the approach was complemented with alternative methodologies (e.g. surveys on social media). Results show positive annual combined benefits of floodplain restoration measures, suggesting the helpfulness of evaluating these NBS through ES assessment. The work done will help increasing the knowledge on floodplain and their ES, and on how to rapidly evaluate them. Moreover, it will bring decision-makers further evidence in favor of floodplain restoration measures to be implemented for a general benefit of the communities.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.