The hairpin-stabilized double-stranded oligonucleotides d(TATGGTATT4ATACCATA) (I) and d(TATAGTATT4ATACTATA) (II) were allowed to react with the three aquated forms of the antitumor drug cisplatin (cis-[PtCl2(NH3)2], 1) which are likely candidates for DNA binding, that is, cis-[PtC1(NH3)2(H2O)]+ (2), cis-[Pt(NH3)2(H2O)2]2+ (3), and its conjugate base cis-[Pt(OH)(NH3)2(H2O)]+ (4). The reaction between I and [Pt(NH3)3(H2O)]2+ (5) was also studied for comparison. All reactions were monitored by HPLC. The platination reactions of I and II were carried out in NaClO4 (0.1M) at 293 K and at a constant pH of 4.5 +/- 0.1 for 2, 3, and 5. The data relative to the platination by 4 were obtained from measurements in unbuffered NaClO4 solutions (0.1M) at a starting pH close to neutrality, where 3 and 4 are present in equilibrium. In this case, a fit function describing the pH-time curve allowed the determination of the actual concentrations of 3, 4, and the dihydroxo complex. The platination rate constants characterizing the bimolecular reactions between either I or II and 2, 3, and 4 were individually determined along with the rate constants for hydrolysis of the chloro-monoadducts and for the chelation reactions of the aqua-monoadducts. The reactivity of compounds 2-5, which have the general formula cis-[Pt(NH3)2(H2O)(Y)]2+/-, decreases in the order 3>4>5>>2, that is, Y= H2O > OH- >NH3 >> Cl-, which is the order of decreasing hydrogen-bond donating ability of Y. Deprotonation of 3 to 4 reduces the reactivity of the platinum complex only by a factor of approximately equals 2, and both complexes discriminate between the different purines of I and II in the same manner. Whereas 3 and 4 react approximately three times faster with the GG sequence of I than with the AG sequence of II, 2 shows a similar reactivity towards both sequences. In view of the well-established preferential binding of cisplatin to GG sequences of DNA in vivo and in vitro, this result suggests that the actual DNA platination species are derived from double hydrolysis of cisplatin.
The asymmetrical platinum complex [PtCl2(N,N-dmen)] (N,N-dmen = N,N-dimethylethylenediamine) reacts with the dinucleotide GpG to form two isomeric chelates of the formula [Pt(N,N-dmen)(GpG)]+ [9]. One of the isomers forms two stable rotamers separable by HPLC, whereas the other apparently prefers one single rotameric form. The favored conformations of these three forms were elucidated by means of molecular mechanics and dynamics techniques. In parallel, we have prepared the adduct, isolated the three rotamers, and recorded their solution circular dichroism (CD) spectra. For the first time we were thus able to correlate the CD features of individual rotamers of a cis-Pt(GpG) chelate with their structures. We show here that the two forms labeled in Inagaki's paper 1'e and 2e have the same right-handed helicoidal arrangement of the guanine bases but display different CD spectra in which the prominent bands have inverted signs. Thus, base-base interactions cannot be the principal cause of the CD of these compounds.
Both cisplatin and the estrogen receptor (ER) are known to bend DNA. The influence of the bending of sequences by the d(GpG)cisPt adduct binding of ER to estrogen response element (ERE)-like sequences was examined. Three ERE-like oligonucleotides with different affinities for ER and which include a GG in the linker sequence were designed in order to form a single central d(GpG)cisPt adduct. Using electrophoretic mobility shift assay and Scatchard analysis, it was shown that the presence of a single d(GpG)cisPt adduct in the linker sequence decreases the ER affinity for DNA. These results do not support a critical role of a DNA bend in the initial recognition of ERE by ER. Then, the platination of DNA outside of the ERE half-sites decreases the interaction of ER with ERE.z 2000 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.