The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT4) act via the TrkB receptor and support survival of primary somatic and visceral sensory neurons. The major visceral sensory population, the nodose-petrosal ganglion complex (NPG), requires BDNF and NT4 for survival of a full complement of neurons, providing a unique opportunity to compare gene dosage effects between the two TrkB ligands and to explore the possibility that one ligand can compensate for loss of the other. Analysis of newborn transgenic mice lacking BDNF or NT4, or BDNF and NT4, revealed that survival of many NPG afferents is proportional to the number of functional BDNF alleles, whereas only one functional NT4 allele is required to support survival of all NT4-dependent neurons. In addition, subpopulation analysis revealed that BDNF and NT4 can compensate for the loss of the other to support a subset of dopaminergic ganglion cells. Together, these data demonstrate that the pattern of neuronal dependencies on BDNF and NT4 in vivo is far more heterogeneous than predicted from previous studies in culture. Moreover, BDNF knockout animals lack a subset of afferents involved in ventilatory control and exhibit severe respiratory abnormalities characterized by depressed and irregular breathing and reduced chemosensory drive. BDNF is therefore required for expression of normal respiratory behavior in newborn animals.
We have shown previously that the inactivation of the zinc finger gene Krox-20 affects hindbrain segmentation, resulting in the elimination of rhombomeres 3 and 5. We demonstrate here that Krox-20 homozygous mutant mice exhibit abnormally slow respiratory and jaw opening rhythms, indicating that a modification of hindbrain segmentation influences the function of neuronal networks after birth. Central neuronal networks that control respiratory frequency are made predominantly depressant by the elimination of a previously undescribed rhythm-promoting system. Recordings of rhythmic activity from the isolated hindbrain following progressive tissue transections indicate that the reorganization takes place in the caudal pontine reticular formation. The newborn (PO) Krox-20-/- mice, in which apneas are ten times longer than in wild-type animals, may be a valuable model for the study of life-threatening apneas during early infancy.
The even-skipped-related homeobox genes (evx) are widely distributed through animal kingdom and are thought to play key role in posterior body patterning and neurogenesis. We have cloned and analyzed the expression of evx1 in zebrafish (see also Borday et al. (Dev. Dyn. 220 (2001) in press) which displays a dynamic and restricted expression pattern during neurogenesis. In spinal cord, rhombencephalon, and epiphysis, evx1 is expressed in several subsets of emerging interneurones prior to their axonal outgrowth, identified as primary interneurones and a subset of Pax2.1(+) commissural interneurones. In the hindbrain, evx1 is expressed in reticulospinal interneurones of rhombomeres 5 and 6 as well as in rhombomere 7 interneurones. The latest emerging evx1(+) interneurones in the hindbrain correspond to commissural interneurones. evx1 is also dynamically transcribed during the formation of the posterior gut and the uro-genital system in mesenchymal cells that border the pronephric ducts, the wall of the pronephric duct, and later in the posterior gut and the wall of the uro-genital opening. In larvae, the ano-rectal epithelium and the muscular layer that surrounds the analia-genitalia region remain stained up to 27 days. In contrast other vertebrates, evx1displays no early nor caudal expression in zebrafish.
the Ligue Nationale Contre le Cancer (LNCC), the Association pour la Recherche sur le Cancer, and the Programme Génome du CNRS. M.D. was supported by fellowships from the LNCC and FRM. R.N. was supported by Deutscher Akademischer Austauschdienst and FRM fellowships. We thank P. Chambon, G. Fortin, C. Goridis, R. Krumlauf, and A. Lumsden for valuable discussions and comments on this manuscript. We also thank T. Jacquin for his participation in some in vitro experiments and M. Poulet for excellent technical assistance. We acknowledge the following colleagues for kind gifts of reagents: P. Chambon (Hoxa1 mice), R. Krumlauf (BGZ40 plasmid and Hoxb1 probe), and J. F. Brunet (Phox2b probe). The 4D5 antibody was obtained from the Developmental Studies Hybridoma Bank under contract NO1-HD-7-3263.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.