Competition between glucose and lactate as oxidative energy substrates was investigated in both primary cultures of astrocytes and neurons using physiological concentrations (1.1 mm for each). Glucose metabolism was distinguished from lactate metabolism by using alternatively labelled substrates in the medium ([1-13C]glucose + lactate or glucose + [3-13C]lactate). After 4 h of incubation, 1H and 13C-NMR spectra were realized on perchloric acid extracts of both cells and culture media. For astrocytic cultures, spectra showed that amino acids (glutamine and alanine) were more labelled in the glucose-labelled condition, indicating that glucose is a better substrate to support oxidative metabolism in these cells. The opposite was observed on spectra from neuronal cultures, glutamate being much more labelled in the lactate-labelled condition, confirming that neurons consume lactate preferentially as an oxidative energy substrate. Analysis of glutamine and glutamate peaks (singlets or multiplets) also suggests that astrocytes have a less active oxidative metabolism than neurons. In contrast, they exhibit a stronger glycolytic metabolism than neurons as indicated by their high lactate production yield. Using a mathematical model, we have estimated the relative contribution of exogenous glucose and lactate to neuronal oxidative metabolism. Under the aforementioned conditions, it represents 25% for glucose and 75% for lactate. Altogether, these results obtained on separate astrocytic and neuronal cultures support the idea that lactate, predominantly produced by astrocytes, is used as a supplementary fuel by neurons in vivo already under resting physiological conditions.
We report the fine-tuning of the relaxometry of gamma-Fe2O3@SiO2 core-shell nanoparticles by adjusting the thickness of the coated silica layer. It is clear that the coating thickness of Fe2O3@SiO2 nanoparticles has a significant impact on the r(1) (at low B0 fields), r(2), and r(2)* relaxivities of their aqueous suspensions. These studies clearly indicate that the silica layer is heterogeneous and has regions that are porous to water and others-that are not. It is also shown, that the viability and the mitochondrial dehydrogenase expression of the microglial cells do not appear to be sensitive to the vesicular load with these core-shell nanoparticles. The adequate silica-shell thickness can therefore be tuned to allow for both a sufficiently high response as contrast agent, and-adequate grafting of targeted biomolecules.
Although several in vitro and ex vivo evidence support the existence of lactate exchange between astrocytes and neurons, a direct demonstration in vivo is still lacking. In the present study, a lentiviral vector carrying a short hairpin RNA (shRNA) was used to downregulate the expression of the monocarboxylate transporter type 2 (MCT2) in neurons of the rat somatosensory cortex (called S1BF) by ~ 25%. After one hour of whisker stimulation, HRMAS 1H-NMR spectroscopy analysis of S1BF perchloric acid extracts showed that while an increase in lactate content is observed in both uninjected and shRNA-control injected extracts, such an effect was abrogated in shMCT2 injected rats. A 13C-incorporation analysis following [1-13C]glucose infusion during the stimulation confirmed that the elevated lactate observed during activation originates from newly synthesized [3-13C]lactate, with blood-derived [1-13C]glucose being the precursor. Moreover, the analysis of the 13C-labeling of glutamate in position C3 and C4 indicates that upon activation, there is an increase in TCA cycle velocity for control rats while a decrease is observed for MCT2 knockdown animals. Using in vivo localized 1H-NMR spectroscopy, an increase in lactate levels is observed in the S1BF area upon whisker stimulation for shRNA-control injected rats but not for MCT2 knockdown animals. Finally, while a robust BOLD fMRI response was evidenced in control rats, it was absent in MCT2 knockdown rats. These data not only demonstrate that glucose-derived lactate is locally produced following neuronal activation but also suggest that its use by neurons via MCT2 is probably essential to maintain synaptic activity within the barrel cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.