Electronic and optical properties of materials are affected by atomic motion through the electron–phonon interaction: not only band gaps change with temperature, but even at absolute zero temperature, zero-point motion causes band-gap renormalization. We present a large-scale first-principles evaluation of the zero-point renormalization of band edges beyond the adiabatic approximation. For materials with light elements, the band gap renormalization is often larger than 0.3 eV, and up to 0.7 eV. This effect cannot be ignored if accurate band gaps are sought. For infrared-active materials, global agreement with available experimental data is obtained only when non-adiabatic effects are taken into account. They even dominate zero-point renormalization for many materials, as shown by a generalized Fröhlich model that includes multiple phonon branches, anisotropic and degenerate electronic extrema, whose range of validity is established by comparison with first-principles results.
The purpose of the present work is to make an exhaustive study of the line shape of the triplet 3p-4s Mg line (Mgb triplet), which is perturbed by He in the extreme physical conditions found in the cool atmosphere of DZ white dwarfs. This study is undertaken by inferring both a unified theory of spectral line broadening and ab initio potential energies. Cool white dwarfs require a specific treatment for line broadening owing to the high helium densities that are involved. Beyond the conventional symmetrical Lorentzian core at low density, we show that the line profiles are asymmetrical and have significant additional contributions on the short wavelength side. This blue asymmetry is a consequence of low maxima in the corresponding Mg-He potential energy difference curves at short and intermediate internuclear distances. The new profiles are shown to provide a good fit to an SDSS (Sloan Digital Sky Survey) observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.