Cryo-electron microscopy (cryo-EM) represents a powerful technology for determining atomic models of biological macromolecules. Despite this promise, human-guided cryo-EM data collection practices limit the impact of cryo-EM because of a path planning problem: cryo-EM datasets typically represent 2-5% of the total sample area. Here, we address this fundamental problem by formalizing cryo-EM data collection as a path planning optimization from low signal data. Within this framework, we incorporate reinforcement learning (RL) and deep regression to design an algorithm that uses distributed surveying of cryo-EM samples at low magnification to learn optimal cryo-EM data collection policies. Our algorithm - cryoRL - solves the problem of path planning on cryo-EM grids, allowing the algorithm to maximize data quality in a limited time without human intervention. A head-to-head comparison of cryoRL versus human subjects shows that cryoRL performs in the top 10% of test subjects, surpassing the majority of users in collecting high-quality images from the same sample. CryoRL establishes a general framework that will enable human-free cryo-EM data collection to increase the impact of cryo-EM across life sciences research.
Compositional AI systems, which combine multiple artificial intelligence components together with other application components to solve a larger problem, have no known pattern of development and are often approached in a bespoke and ad hoc style. This makes development slower and harder to reuse for future applications. To support the full rapid development cycle of compositional AI applications, we have developed a novel framework called (Bee) * (written as a regular expression and pronounced as "beestar"). We illustrate how (Bee) * supports building integrated, scalable, and interactive compositional AI applications with a simplified developer experience.
Cryo-electron microscopy (cryo-EM) represents a powerful technology for determining atomic models of biological macromolecules(Kühlbrandt, 2014). Despite this promise, human-guided cryo-EM data collection practices limit the impact of cryo-EM because of a path planning problem: cryo-EM datasets typically represent 2-5% of the total sample area. Here, we address this fundamental problem by formalizing cryo-EM data collection as a path planning optimization from low signal data. Within this framework, we incorporate reinforcement learning (RL) and deep regression to design an algorithm that uses distributed surveying of cryo-EM samples at low magnification to learn optimal cryo-EM data collection policies. Our algorithm - cryoRL - solves the problem of path planning on cryo-EM grids, allowing the algorithm to maximize data quality in a limited time without human intervention. A head-to-head comparison of cryoRL versus human subjects shows that cryoRL performs in the top 10% of test subjects, surpassing the majority of users in collecting high-quality images from the same sample. CryoRL establishes a general framework that will enable human-free cryo-EM data collection to increase the impact of cryo-EM across life sciences research.
Cryo-electron microscopy (cryo-EM) represents a powerful technology for determining atomic models of biological macromolecules(Kühlbrandt, 2014). Despite this promise, human-guided cryo-EM data collection practices limit the impact of cryo-EM because of a path planning problem: cryo-EM datasets typically represent 2-5% of the total sample area. Here, we address this fundamental problem by formalizing cryo-EM data collection as a path planning optimization from low signal data. Within this framework, we incorporate reinforcement learning (RL) and deep regression to design an algorithm that uses distributed surveying of cryo-EM samples at low magnification to learn optimal cryo-EM data collection policies. Our algorithm - cryoRL - solves the problem of path planning on cryo-EM grids, allowing the algorithm to maximize data quality in a limited time without human intervention. A head-to-head comparison of cryoRL versus human subjects shows that cryoRL performs in the top 10% of test subjects, surpassing the majority of users in collecting high-quality images from the same sample. CryoRL establishes a general framework that will enable human-free cryo-EM data collection to increase the impact of cryo-EM across life sciences research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.