To assess the potential adaptive value of mtDNA, we evaluated functional properties and thermal sensitivity of key mitochondrial enzymes in two species that have originally evolved in different thermal environments (arctic charr, Salvelinus alpinus, and brook charr, S. fontinalis), as well as in their hybrids. We measured the activity of two enzymes of the electron transport system (cytochrome c oxidase and NADH-ubiquinone oxidoreductase), one enzyme of the mitochondrial matrix (citrate synthase), and one enzyme of the anaerobic glycolysis (lactate dehydrogenase) in the red muscle at three temperatures (6 degrees C, 12 degrees C and 18 degrees C). Surprisingly, the species presented no significant differences in enzyme activity, thermal sensitivity or thermostability of key metabolic enzymes even though they evolved in different thermal environments and present important differences in amino acid sequences. It seems that amino acid substitutions between those species have minor impact on the functional properties of mitochondrial enzymes studied. The thermal sensitivity results (Q(10)) obtained for inner-membrane mitochondrial enzymes differed somewhat from those of mitochondrial matrix or cytosolic enzymes. This result indicates the modulation of thermal sensitivity of all mitochondrial inner-membrane processes by a common parameter, which could be the structural and functional properties of membrane phospholipids.
We investigated the role of mitochondrial function in the avian thermoregulatory response to a cold environment. Using black-capped chickadees (Poecile atricapillus) acclimated to cold (−10°C) and thermoneutral (27°C) temperatures, we expected to observe an upregulation of pectoralis muscle and liver respiratory capacity that would be visible in mitochondrial adjustments in cold-acclimated birds. We also predicted that these adjustments would correlate with thermogenic capacity (Msum) and basal metabolic rate (BMR). Using tissue high-resolution respirometry, mitochondrial performance was measured as respiration rate triggered by proton leak and the activity of complex I (OXPHOSCI) and complex I+II (OXPHOSCI+CII) in the liver and pectoralis muscle. The activity of citrate synthase (CS) and cytochrome c oxidase (CCO) was also used as a marker of mitochondrial density. We found 20% higher total CS activity in the whole pectoralis muscle and 39% higher total CCO activity in the whole liver of cold-acclimated chickadees relative to that of birds kept at thermoneutrality. This indicates that cold acclimation increased overall aerobic capacity of these tissues. Msum correlated positively with mitochondrial proton leak in the muscle of cold-acclimated birds while BMR correlated with OXPHOSCI in the liver with a pattern that differed between treatments. Consequently, this study revealed a divergence in mitochondrial metabolism between thermal acclimation states in birds. Some functions of the mitochondria covary with thermogenic capacity and basal maintenance costs in patterns that are dependent on temperature and body mass.
The thermal sensitivity of ectotherms is largely dictated by the impact of temperature on cellular bioenergetics, particularly on mitochondrial functions. As the thermal sensitivity of bioenergetic pathways depends on the structural and kinetic properties of its component enzymes, optimization of their collective function to different thermal niches is expected to have occurred through selection. In the present study, we sought to characterize mitochondrial phenotypic adjustments to thermal niches in eight ray-finned fish species occupying a wide range of thermal habitats by comparing the activities of key mitochondrial enzymes in their hearts. We measured the activity of four enzymes that control substrate entrance into the tricarboxylic acid (TCA) cycle: pyruvate kinase (PK), pyruvate dehydrogenase complex (PDHc), carnitine palmitoyltransferase (CPT), and hydroxyacyl-CoA dehydrogenase (HOAD). We also assayed enzymes of the electron transport system (ETS): complexes I, II, I + III, and IV. Enzymes were assayed at five temperatures (5, 10, 15, 20, and 25°C). Our results showed that the activity of CPT, a gatekeeper of the fatty acid pathway, was higher in the cold-water fish than in the warmer-adapted fish relative to the ETS (complexes I and III) when measured close to the species optimal temperatures. The activity of HOAD showed a similar pattern relative to CI + III and thermal environment. By contrast, PDHc and PK did not show the similar patterns with respect to CI + III and temperature. Cold-adapted species had high CIV activities compared to those of upstream complexes (I, II, I + III) whereas the converse was true for warm-adapted species. Our findings reveal a significant variability of heart mitochondrial organization among species that can be linked to temperature adaptation. Cold-adapted fish do not appear to compensate for PDHc activity but likely adjust fatty acids oxidation through higher activities of CPT and HOAD relative to complexes I + III.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.