Apical plasma membrane constituents of mammalian neural stem/progenitor cells have recently been implicated in maintaining their stem/progenitor cell state. Here, we report that in the developing embryonic mouse brain, the fluid in the lumen of the neural tube contains membrane particles carrying the stem cell marker prominin-1 (CD133), a pentaspan membrane protein found on membrane protrusions of the apical surface of neuroepithelial cells. Two size classes of prominin-1-containing membrane particles were observed in the ventricular fluid: ≈600-nm particles, referred to as P2 particles, and 50-80-nm vesicles, referred to as P4 particles. The P2 and P4 particles appeared in the ventricular fluid at the very onset and during the early phase of neurogenesis, respectively. Concomitant with their appearance, the nature of the prominin-1-containing apical plasma membrane protrusions of neuroepithelial cells changed, in that microvilli were lost and large pleiomorphic protuberances appeared. P4 particles were found in various body fluids of adult humans, including saliva, seminal fluid and urine, and were released by the epithelial model cell line Caco-2 upon differentiation. Importantly, P4 particles were distinct from exosomes. Our results demonstrate the widespread occurrence of a novel class of extracellular membrane particles containing proteins characteristic of stem cells, and raise the possibility that the release of the corresponding membrane subdomains from the apical surface of neural progenitors and other epithelial cells may have a role in tissue development and maintenance. Moreover, the presence of prominin-1-containing membrane particles in human body fluids may provide the basis for a protein-based diagnosis of certain diseases.
Breathing is maintained and controlled by a network of neurons in the brainstem that generate respiratory rhythm and provide regulatory input. Central chemoreception, the mechanism for CO2 detection that provides an essential stimulatory input, is thought to involve neurons located near the medullary surface, whose nature is controversial. Good candidates are serotonergic medullary neurons and glutamatergic neurons in the parafacial region. Here, we show that mice bearing a mutation in Phox2b that causes congenital central hypoventilation syndrome in humans breathe irregularly, do not respond to an increase in CO2, and die soon after birth from central apnea. They specifically lack Phox2b-expressing glutamatergic neurons located in the parafacial region, whereas other sites known or supposed to be involved in the control of breathing are anatomically normal. These data provide genetic evidence for the essential role of a specific population of medullary interneurons in driving proper breathing at birth and will be instrumental in understanding the etiopathology of congenital central hypoventilation syndrome.brainstem ͉ congenital central hypoventilation syndrome ͉ neurodegenerative disease ͉ respiration
Breathing is a bilaterally synchronous behavior that relies on a respiratory rhythm generator located in the brainstem. An essential component of this generator is the preBötzinger complex (preBötC), which paces inspirations. Little is known about the developmental origin of the interneuronal populations forming the preBötC oscillator network. We found that the homeobox gene Dbx1 controls the fate of glutamatergic interneurons required for preBötC rhythm generation in the mouse embryo. We also found that a conditional inactivation in Dbx1-derived cells of the roundabout homolog 3 (Robo3) gene, which is necessary for axonal midline crossing, resulted in left-right de-synchronization of the preBötC oscillator. Together, these findings identify Dbx1-derived interneurons as the core rhythmogenic elements of the preBötC oscillator and indicate that Robo3-dependent guidance signaling in these cells is required for bilaterally synchronous activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.