The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co‐segregation, family cancer history profile, co‐occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case‐control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene‐specific calibration of evidence types used for variant classification.
Autosomal recessive spinal muscular atrophy with respiratory distress (SMARD) is a heterogeneous disorder. Mutations in the immunoglobulin micro-binding protein gene (IGHMBP2) lead to SMARD1, but clinical criteria that delineate SMARD1 from other SMARD syndromes are not well established. Here we present a retrospective clinical and genetic study to determine the criteria that would predict the presence or absence of IGHMBP2 mutations. From 141 patients with respiratory distress and a spinal muscular atrophy phenotype we recorded the clinical features through a questionnaire and sequenced the entire coding region of IGHMBP2. In 47 (33%) patients we identified IGHMBP2 mutations, 14 of which were not described before. Clinical features and combinations thereof associated with the presence of IGHMBP2 mutations were discovered through hierarchical cluster analysis. This method detects common traits not evident at first sight by grouping items according to their similarity. The combination of "manifestation of respiratory failure between 6 weeks and 6 months" AND ("presence of diaphragmatic eventration" OR "preterm birth") predicted the presence of IGHMBP2 mutations with 98% sensitivity and 92% specificity. Non-SMARD1 patients fell into two different symptom clusters, mainly separated by the age at respiratory failure and the presence of multiple congenital contractures. The 14 novel IGHMBP2 mutations comprised missense, frameshift, splice-site, and nonsense mutations. All missense mutations altered conserved residues within or adjacent to the putative DNA helicase domain. The c.1235+3A>G splice-site mutation did not entirely suppress correct splicing and we found a residual wild-type IGHMBP2 mRNA steady-state level of 24.4+/-6.9%, which was, however, not sufficient to avert SMARD1 in this patient.
Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1gt/gt mice, the overall survival rates of the Mcph1gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.
Hypomorphic mutations of the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), characterized by microcephaly, chromosomal instability, radiosensitivity, immunodeficiency and high cancer predisposition. Over 90% of NBS patients are homozygous for the 657Delta5 mutation and are of Slavic origin; however, 10 further truncating mutations have been identified in patients of other ethnic origin. Partially functional proteins produced by alternative initiation of translation, and possibly diminishing the severity of the NBS phenotype, have been described for several NBS1 mutations. Here, we report a 53-year-old NBS patient, homozygous for the NBS1 mutation, 742insGG, in exon 7 and who presents with a particularly mild phenotype. In an attempt to find a potential molecular explanation for the mild phenotype observed, we carried out a conventional semi-quantitative and quantitative RT-PCR analyses which revealed two transcripts of almost equal amounts in the patient and her parents--the expected full-length transcript carrying the 742insGG mutation and a second transcript with deleted exons 6 and 7. The transcript was also observed in controls and other NBS patients, however, at quantities more than 100-fold lower than that in the patient described here. Because the skipping of exons 6 and 7 results in an internal in-frame deletion, which eliminates the truncating GG-insertion, we propose that this transcript may code for a partially functional protein of approximately 70 kDa that could be responsible for the unusually mild NBS phenotype observed in this patient. Indeed, complementation analysis of null-mutant mouse cells indicates that the alternatively spliced mRNA codes for a protein with significant functional capacity.
The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the ‘Slavic people’. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.