This paper demonstrates the coupling of a plasma etched polymer microfluidic system with an electrospray mass spectrometer by generation of a nanospray. Taking advantage of the microtechnology processes and polymer properties, high volume production with good reproducibility of hydrophobic interfaces could be obtained. The nanospray was directly produced from the outlet of the plastic microfabricated chip positioned in front of the capillary entrance of the mass spectrometer. No chemical background due to the polymer has been observed under standard nanospray conditions. The performances of the spray as well as its efficiency have been demonstrated by flow measurements, stability establishment and tandem mass spectrometry experiment on angiotensin II. The spray was actuated without additional flow in methanol: water:acetic acid (50:49:1%) solution. A 40 fmol/microL detection limit could be reached.
This paper presents a novel technique based on plasma etching for the mass production of polymer microchip devices. The method consists of the patterning of a photo-resist by a high resolution printer on a foil composed of three layers (5 microm copper/50 microm polyimide/5 microm copper). After this step, both copper layers are chemically etched in order to serve as a contact mask on the polyimide surface so as to produce the desired microstructure pattern. The foil is placed into a reactive plasma chamber in order to etch the exposed polyimide by means of an oxidizing plasma. The method enables holes, lines or larger areas to be etched, thereby generating either microholes, microchannels or electrodes in the plastic material. The copper can then be chemically removed or further patterned to produce conductive pads which are further electroplated with gold. The microchannel is then covered with a polyethylene terephthalate/polyethylene (PET/PE) lamination. The strength of this technology is that access holes for the fluid inlet and outlet, as well as gold coated electrodes can be fabricated without post-processing in a batch process. Demonstration of the application of such microelectrochemical systems is shown here by voltammetric detection inside a 60 nL microchannel, which presents the special feature of linear depletion of the analytes in the direction parallel to the microchannel.
The ionic partition diagram methodology has been generalized to address both hydrophilic and lipophilic compounds and to consider biphasic systems with variable phase volume ratios. With this generalized approach electrochemical measurements of ion transfer potentials afford the determination of the standard partition coefficients of all forms of ionizable molecules, including the neutral form, as well as the evaluation of the dissociation constant of monoprotic substances. An interesting consequence of this approach is the definition of an extraction pK(a,ext) which is the apparent pK(a) of neutral acids and bases when dissolved in the organic phase.
This paper first gives a brief review of the main techniques used to measure the lipophilicity of neutral and ionic drugs, namely the shake‐flask method, potentiometry, and cyclic voltammetry at liquid–liquid interfaces. The lipophilicity of 28 acidic compounds with various functional groups was studied by potentiometry and cyclic voltammetry in the n‐octanol/water and 1,2‐dichloroethane/water systems in order to complement our understanding of the lipophilicity of neutral and ionized acids and to clarify the solvation mechanisms responsible for their partition. The parameter diff(log P $\rm{_{dce}^{N-A}}$) (i.e., log P of the neutral acid minus standard log P of the conjugated anion in 1,2‐dichloroethane/water) was shown to depend not only on intramolecular interactions and conformational effects in the neutral and anionic forms, but also on the delocalization of the negative charge in the anion, confirming the ability of Born's solvation model to describe qualitatively the effect of the molecular radius on the lipophilicity of ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.