The Génolevures Consortium 1 Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call ''protoploid'' because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified.
All of the protein products of Turnip crinkle virus (TCV; Tombusviridae, Carmovirus) were tested for their ability to suppress RNA silencing of a reporter gene after transient expression in Agrobacterium-infiltrated Nicotiana benthamiana leaves. Only the capsid protein, P38, showed suppression activity, although this was not obvious when P38 was expressed as part of a TCV infection of the same tissues. When P38 was expressed from a PVX vector, symptoms with enhanced severity that correlated with increased PVX RNA accumulation were observed. This contradiction between ectopic expression of P38 and TCV infection could be accounted for if the active determinant of suppressor activity within P38 was sequestered within the capsid protein structure. The N-terminal 25 amino acids were shown to be important for this activity. This region forms part of the unexposed R-domain that interacts with the RNA within the virus particle. This observation throws light on some of the complex biology exhibited by TCV.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replication and assembly occur. In this study, the mechanism involved in viroplasm formation was investigated by in vitro and in vivo experiments. Far protein gel blot assays using a collection of P6 deletion mutants demonstrated that the N-terminal a-helix of P6 mediates interaction between P6 molecules. Transient expression in tobacco (Nicotiana tabacum) BY-2 cells of full-length P6 and P6 mutants fused to enhanced green fluorescent protein revealed that viroplasms are formed at the periphery of the nucleus and that the N-terminal domain of P6 is an important determinant in this process. Finally, this study led to the unexpected finding that P6 is a nucleocytoplasmic shuttle protein and that its nuclear export is mediated by a Leu-rich sequence that is part of the a-helix domain implicated in viroplasm formation. The discovery that P6 can localize to the nucleus opens new prospects for understanding yet unknown roles of this viral protein in the course of the CaMV infection cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.