This study was designed to assess the effects of long-term adaptation to a high protein diet on energy intake, body weight gain, body composition and splanchnic metabolic indicators in rats. For this purpose, adult male Wistar rats were fed either a 50 g/100 g dry matter (DM) protein diet (P50 group) or a 14 g/100 g DM protein diet (P14 group) for 21 d. These two groups were compared with a P14 pair-fed (P14-pf) group that consumed the same daily energy as the P50 group. The energy intake of the P50 group was 16 +/- 1% less than that of the P14 group (P < 0.05), and the P50 group had significantly lower body weight. The P50 group had significantly less adipose tissue compared with both P14 and P14-pf rats. The activities of the brush border membrane enzymes, neutral aminopeptidase and gamma-glutamyl transferase, were significantly higher in the P50 group than in the P14 rats. Similarly, the activities of alanine aminotransferase, arginase and serine dehydratase were significantly higher in the liver of P50 rats compared with P14 rats. Both amino acid transporter system A and X(A,G-) activities, measured in freshly isolated hepatocytes, were significantly higher in the P50 group (8- and 1.5-fold, P < 0.05, respectively) compared with the P14 group. The 1.5-fold increase in the steady-state activity of X(A,G-) was accompanied by a doubling of EAAT2 mRNA, involved in the system X(A,G-). This study provides confirmation that specific biochemical and molecular adaptive processes of the splanchnic area are involved in the response to variations in the protein content of the diet.
Although there is a considerable interest of high-protein, low-carbohydrate diets to manage weight control, their safety is still the subject of considerable debate. They are suspected to be detrimental to the renal and hepatic functions, calcium balance, and insulin sensitivity. However, the long-term effects of a high-protein diet on a broad range of parameters have not been investigated. We studied the effects of a high-protein diet in rats over a period of 6 mo. Forty-eight Wistar male rats received either a normal-protein (NP: 14% protein) or high-protein (HP: 50% protein) diet. Detailed body composition, plasma hormones and nutrients, liver and kidney histopathology, hepatic markers of oxidative stress and detoxification, and the calcium balance were investigated. No major alterations of the liver and kidneys were found in HP rats, whereas NP rats exhibited massive hepatic steatosis. The calcium balance was unchanged, and detoxification markers (GSH and GST) were enhanced moderately in the HP group. In contrast, HP rats showed a sharp reduction in white adipose tissue and lower basal concentrations of triglycerides, glucose, leptin, and insulin. Our study suggests that the long-term consumption of an HP diet in male rats has no deleterious effects and could prevent metabolic syndrome.
Besides their well‐known effect in the molting control in insects, ecdysteroids are steroid hormones that display potential pharmacologic and metabolic properties in mammals. The most common ecdysteroid, 20‐hydroxyecdysone (20E) is found in many plants such as quinoa. The aim of the present study was to investigate the ability of quinoa extract (Q) enriched in 20E supplementation to prevent the onset of diet‐induced obesity and to regulate the expression of adipocyte‐specific genes in mice. Mice were fed a standard low‐fat (LF) or a high‐fat (HF) diet with or without supplementation by 20E‐enriched Q or pure 20E for 3 weeks. Supplementation with Q reduced adipose tissue development in HF mice without modification of their body weight gain. This adipose tissue‐specific effect was mainly associated with a reduced adipocyte size and a decrease in the expression of several genes involved in lipid storage, including lipoprotein lipase and phosphoenolpyruvate carboxykinase. Furthermore, Q‐treated mice exhibited marked attenuation of mRNA levels of several inflammation markers (monocyte chemotactic protein‐1, CD68) and insulin resistance (osteopontin, plasminogen activator inhibitor‐1 (PAI‐1)) as compared to HF mice. Q supplementation also reversed the effects of HF‐induced downregulation of the uncoupling protein(s) (UCP(s)) mRNA levels in muscle. Similar results were obtained in mice fed a HF diet supplemented with similar amounts of pure 20E, suggesting that the latter accounted for most of the Q effects. Our study indicates that Q has an antiobesity activity in vivo and could be used as a nutritional supplement for the prevention and treatment of obesity and obesity‐associated disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.