Goto-Kakizaki (GK) rats are a well characterized model for non-insulin dependent diabetes mellitus (NIDDM). We have used a combination of physiological and genetic studies to identify quantitative trait loci (QTLs) responsible for the control of glucose homeostasis and insulin secretion in a F2 cohort bred from spontaneously diabetic GK rats. The genetic dissection of NIDDM allowed us to map up to six independently segregating loci predisposing to hyperglycaemia, glucose intolerance or altered insulin secretion, and a seventh locus implicated in body weight. QTLs implicated in glucose tolerance and adiposity map to the same region of rat chromosome 1, and may indicate the influence of a single locus. Our study demonstrates that distinct combinations of genetic loci are responsible for different physiological characteristics associated with the diabetic phenotype in the GK rat, and it constitutes an important step for directing the search for the genetic factors involved in human NIDDM.
A genome-wide search was conducted in 107 nuclear families with at least two siblings with asthma, as part of the French EGEA study. A two-stage analysis strategy was applied to the 107 families divided into two independent subsets of 46 and 61 families, where all regions detected in the first set of families were tested for replication in the second set. In addition, all regions reported by published genome scans in different populations were examined in the total sample. A total of 254 markers were typed in the first set of families and 70% of them in the second set. Linkage was investigated by model-free methods for asthma and four asthma-related phenotypes: bronchial responsiveness (BR), skin test response, total immunoglobulin E (IgE) levels, and eosinophil count. The two-stage analysis led to the detection of three regions: 11p13 for IgE, 12q24 for eosinophils, and 17q12-21 for asthma and skin tests. Among the regions reported by published genome screens, seven were found in the 107 French EGEA families: three being already detected by the two-stage analysis, 11p13 (p = 0.005), 12q24 (p = 0.0008), and 17q12-21 (p = 0.001), and four additional ones, 1p31 (p = 0.005) for asthma, 11q13 (p = 0.006) for IgE, 13q31 (p = 0.001) for eosinophils, and 19q13 (p = 0.02) for BR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.