Drosophila gurken mRNA is localized by dynein-mediated transport to a crescent near the oocyte nucleus, thus targeting the TGFalpha signal and forming the primary embryonic axes. Here, we show that gurken and the I factor, a non-LTR retrotransposon, share a small consensus RNA stem loop of defined secondary structure, which forms a conserved signal for dynein-mediated RNA transport to the oocyte nucleus. Furthermore, gurken and the I factor compete in vivo for the same localization machinery. I factor transposition leads to its mRNA accumulating near and within the oocyte nucleus, thus causing perturbations in gurken and bicoid mRNA localization and axis specification. These observations further our understanding of the close association of transposable elements with their host and provide an explanation for how I factor transposition causes female sterility. We propose that the transposition of other elements may exploit the host's RNA transport signals and machinery.
The extracellular matrix plays an essential role for stem cell differentiation and niche homeostasis. Yet, the origin and mechanism of assembly of the stem cell niche microenvironment remain poorly characterized. Here, we uncover an association between the niche and blood cells, leading to the formation of the Drosophila ovarian germline stem cell niche basement membrane. We identify a distinct pool of plasmatocytes tightly associated with the developing ovaries from larval stages onward. Expressing tagged collagen IV tissue specifically, we show that the germline stem cell niche basement membrane is produced by these "companion plasmatocytes" in the larval gonad and persists throughout adulthood, including the reproductive period. Eliminating companion plasmatocytes or specifically blocking their collagen IV expression during larval stages results in abnormal adult niches with excess stem cells, a phenotype due to aberrant BMP signaling. Thus, local interactions between the niche and blood cells during gonad development are essential for adult germline stem cell niche microenvironment assembly and homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.