The simultaneous spatiotemporal modeling of multiple related diseases strengthens inferences by borrowing information between related diseases. Numerous research contributions to spatiotemporal modeling approaches exhibit their strengths differently with increasing complexity. However, contributions that combine spatiotemporal approaches to modeling of multiple diseases simultaneously are not so common. We present a full Bayesian hierarchical spatio-temporal approach to the joint modeling of Human Immunodeficiency Virus and Tuberculosis incidences in Kenya. Using case notification data for the period 2012-2017, we estimated the model parameters and determined the joint spatial patterns and temporal variations. Our model included specific and shared spatial and temporal effects. The specific random effects allowed for departures from the shared patterns for the different diseases. The space-time interaction term characterized the underlying spatial patterns with every temporal fluctuation. We assumed the shared random effects to be the structured effects and the disease-specific random effects to be unstructured effects. We detected the spatial similarity in the distribution of Tuberculosis and Human Immunodeficiency Virus in approximately 29 counties around the western, central and southern regions of Kenya. The distribution of the shared relative risks had minimal difference with the Human Immunodeficiency Virus disease-specific relative risk whereas that of Tuberculosis presented many more counties as high-risk areas. The flexibility and informative outputs of Bayesian Hierarchical Models enabled us to identify the similarities and differences in the distribution of the relative risks associated with each disease. Estimating the Human Immunodeficiency Virus and Tuberculosis shared relative risks provide additional insights towards collaborative monitoring of the diseases and control efforts.
BackgroundTuberculosis (TB) and Human Immunodeficiency Virus (HIV) diseases are globally acknowledged as a public health challenge that exhibits adverse bidirectional relations due to the co-epidemic overlap. To understand the co-infection burden we used the case notification data to generate spatiotemporal maps that described the distribution and exposure hypotheses for further epidemiologic investigations in areas with unusual case notification levels.MethodsWe analyzed the TB and TB-HIV case notification data from the Kenya national TB control program aggregated for forty-seven counties over a seven-year period (2012–2018). Using spatiotemporal poisson regression models within the Integrated Nested Laplace Approach (INLA) paradygm, we modeled the risk of TB-HIV co-infection. Six competing models with varying space-time formulations were compared to determine the best fit model. We then assessed the geographic patterns and temporal trends of coinfection risk by mapping the posterior marginal from the best fit model.ResultsOf the total 608,312 TB case notifications, 194,129 were HIV co-infected. The proportion of TB-HIV co-infection was higher in females (39.7%) than in males (27.0%). A significant share of the co-infection was among adults aged 35 to 44 years (46.7%) and 45 to 54 years (42.1%). Based on the Bayesian Defiance Information (DIC) and the effective number of parameters (pD) comparisons, the spatiotemporal model allowing space-time interaction was the best in explaining the geographical variations in TB-HIV coinfection. The model results suggested that the risk of TB-HIV coinfection was influenced by infrastructure index (Relative risk (RR) = 5.75, Credible Interval (Cr.I) = (1.65, 19.89)) and gender ratio (RR = 5.81e−04, Cr. I = (1.06e−04, 3.18e−03). The lowest and highest temporal relative risks were in the years 2016 at 0.9 and 2012 at 1.07 respectively. The spatial pattern presented an increased co-infection risk in a number of counties. For the spatiotemporal interaction, only a few counties had a relative risk greater than 1 that varied in different years.ConclusionsWe identified elevated risk areas for TB/HIV co-infection and fluctuating temporal trends which could be because of improved TB case detection or surveillance bias caused by spatial heterogeneity in the co-infection dynamics. Focused interventions and continuous TB-HIV surveillance will ensure adequate resource allocation and significant reduction of HIV burden amongst TB patients.
Background Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) diseases are globally acknowledged as a public health challenge that exhibits adverse bidirectional relations due to the co-epidemic overlap. To understand the co-infection burden we used the case notification data to generate spatiotemporal maps that described the distribution and exposure hypotheses for further epidemiologic investigations in areas with unusual case notification levels. Methods We analyzed the TB and TB-HIV case notification data from the Kenya national TB control program aggregated for forty-seven counties over a seven-year period (2012 – 2018). Using the Integrated Nested Laplace Approach (INLA), we modeled the risk of TB-HIV co-infection. Six competing models with varying space-time formulations were compared to determine the best fit model. We then assessed the geographic patterns and temporal trends of coinfection risk by mapping the posterior marginal from the best fit model. Results Of the total 608312 TB case notifications, 194129 were HIV co-infected. The proportion of TB-HIV co-infection was higher in females (39.7%) than in males (27.0%). A significant share of the co-infection was among adults aged 35 to 44 years (46.7%) and 45 to 54 years (42.1%). Based on the Bayesian Defiance Information (DIC) and the effective number of parameters comparisons, the spatiotemporal model 3b was the best in explaining the geographical variations in TB-HIV coinfection. The model results suggested that the risk of TB-HIV coinfection was influenced by infrastructure index (Relative risk (RR)=5.75, Credible Interval (Cr.I) = (1.65, 19.89)) and gender ratio . The lowest and highest temporal relative risks were in the years 2016 at 0.9 and 2012 at 1.07 respectively. The spatial pattern presented an increased co-infection risk in a number of counties. For the spatiotemporal interaction, only a few counties had a relative risk greater than 1 that varied in different years. Conclusions We identified elevated risk areas for TB/HIV co-infection and fluctuating temporal trends which could be because of improved TB case detection or surveillance bias caused by spatial heterogeneity in the co-infection dynamics. Focused interventions and continuous TB-HIV surveillance will ensure adequate resource allocation and significant reduction of HIV burden amongst TB patients
The spatiotemporal modeling of multiple diseases simultaneously is a recent extension that advances the space-time analysis to model multiple related diseases simultaneously. This approach strengthens inferences by borrowing information between related diseases. Numerous research contributions to spatiotemporal modeling approaches exhibit their strengths differently with increasing complexity. However, contributions that combine spatiotemporal approaches to modeling of multiple diseases simultaneously are not so common. We present a full Bayesian hierarchical spatio-temporal approach to the joint modeling of Human Immunodeficiency Virus and Tuberculosis incidences in Kenya. Using case notification data for the period 2012 - 2017, we estimated the model parameters and determined the joint spatial patterns and temporal variations. Our model included specific and shared spatial and temporal effects. The specific random effects allowed for departures from the shared patterns for the different diseases. The space-time interaction term characterized the underlying spatial patterns with every temporal fluctuation. We assumed the shared random effects to be the structured effects and the disease-specific random effects to be unstructured effects. We detected the spatial congruence in the distribution of Tuberculosis and Human Immunodeficiency Virus in approximately 29 counties around the western, central and southern regions of Kenya. The distribution of the shared relative risks had minimal difference with the Human Immunodeficiency Virus disease-specific relative risk whereas that of Tuberculosis presented many more counties as high-risk areas. The flexibility and informative outputs of Bayesian Hierarchical Models enabled us to identify the similarities and differences in the distribution of the relative risks associated with each disease. Estimating the Human Immunodeficiency Virus and Tuberculosis shared relative risks provide additional insights towards collaborative monitoring of the diseases and control efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.