A low-cost process for the production of laccases is necessary for a sustainable enzymatic wastewater treatment. Therefore, it is necessary to establish an easy and low-cost procedure for the production of laccase. In the present study the properties of crude laccase from Trametes versicolor produced by solidsubstrate fermentation is investigated. The application of the enzyme for dye decolorization is also studied. Crude laccase from the studied culture established maximal activity at 45ºC. The enzyme retained over 90% of its activity in the temperature range 40-47ºC and pH 4.5. The kinetic constants of the crude enzyme was also determined. In the presence of KCl, NaCl, CaCl 2 , MnSO 4 and MgSO 4 , laccase demonstrated high stability-over 50% of its initial activity was still retained after 4-month incubation.
In the present study, the chemical composition and antioxidant potential of an essential oil of ginger rhizomes from Ecuador was elucidated. The analysis of the essential oil by GC/FID/MS resulted in identification of 71 compounds, of which the main are citral (geranial 10.5% and neral 9.1%), α-zingiberene (17.4%), camphene (7.8%), α-farnesene (6.8%) and β-sesquiphellandrene (6.7%). The in vitro antioxidant activity of the essential oil expressed by IC 50 in descending order is: hydroxyl radical (OH •) scavenging (0.0065 µg/mL) > chelating capacity (0.822 µg/mL) > 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS •+) scavenging (3.94 µg/mL) > xanthine oxidase inhibition (138.0 µg/mL) > oxygen radical (О 2 •) scavenging (404.0 µg/mL) > 2,2diphenyl-1-picrylhydrazyl radical (DPPH •) scavenging (675 µg/mL). Lipid peroxidation inhibition of the essential oil was less efficient than butylhydroxytoluol (BHT) in both stages, i.e. hydroperoxide and malondialdehyde formation. In vivo studies in Saccharomyces cerevisiae demonstrated a significant dosedependent increase in antioxidant marker enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), blocking the oxidation processes in yeast cells. Moreover, ginger essential oil in concentrations of 1.6 mg/mL increases the viability of cells to oxidative stress induced by H 2 O 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.