We probe the transport properties in protein solutions stable with respect to any, solid or liquid, phase separation as a step in the understanding of transport in the cytosol of live cells. We determine the mean-squared displacement of probe particles in the time range 10;{-3}-10 s in solutions of a model protein. The tested solutions exhibit significant elasticity at high frequencies, while at low frequencies, they are purely viscous. We attribute this viscoelasticity to a dense network of weakly-bound chains of protein molecules with characteristic lifetime of 10-100 ms. The found intrinsic viscoelasticity of protein solutions should be considered in biochemical kinetics models.
Reversible self-folding actions of natural biomacromolecules play crucial roles for specific and unique biological functions in Nature. Hence, controlled folding of single polymer chains has attracted significant attention in recent years. Herein, reversible single-chain folded glycopolymer structures in α-shape with different density of sugar moieties in the knot were created. The influence of folding as well as the sugar density in the knot was investigated on the binding capability with lectins, such as ConA, DC-SIGN, and DC-SIGNR. The synthesis of triblock glycocopolymers bearing β-CD and adamantane for the host-guest interaction and also mannose residues for the lectin interaction was achieved using the reversible addition-fragmentation chain transfer (RAFT) polymerization technique. The reversible single-chain folding of glycopolymers was achieved under a high dilution of an aqueous solution and the self-assembled folding was monitored by 2D nuclear overhauser enhancement spectroscopy (NOESY) NMR and dynamic light scattering. The lectin binding profiles consistently provided an unprecedented effect of single chain folding as the single-chain folded structures enhanced greatly the binding ability in comparison to the unfolded linear structures.
In search of novel control parameters for the polymerization of sickle cell hemoglobin (HbS), the primary pathogenic event of sickle cell anemia, we explore the role of free heme, which may be excessively released in sickle erythrocytes. We show that the concentration of free heme in HbS solutions typically used in the laboratory is 0.02-0.04 mole heme/mole HbS. We show that dialysis of small molecules out of HbS solutions arrests HbS polymerization. The addition of 100-260 μM of free heme to dialyzed HbS solutions leads to rates of nucleation and polymer fiber growth faster by two orders of magnitude than before dialysis. Toward an understanding of the mechanism of nucleation enhancement by heme, we show that free heme at a concentration of 66 μM increases by two orders of magnitude the volume of the metastable clusters of dense HbS liquid, the locations where HbS polymer nuclei form. These results suggest that spikes of the free heme concentration in the erythrocytes of sickle cell anemia patients may be a significant factor in the complexity of the clinical manifestations of sickle cell anemia. The prevention of free heme accumulation in the erythrocyte cytosol may be a novel avenue to sickle cell therapy.
Glycopolypeptides with defined block sequences were prepared by sequential addition of two different N-carboxyanhydrides (NCAs), followed by selective deprotection and functionalization of pre-defined positions within the polypeptide backbone. The sequential arrangement of the galactose units and the block sequence length have been systematically varied. All the glycopolypeptides have been obtained with a similar overall composition and comparable molecular weights. Circular dichroism measurements revealed some dependence of the secondary structure on the primary composition of the glycopolypeptides at physiological pH.While statistical, diblock and tetrablock glycopolypeptides adopted random coil conformation, the octablock glycopolypeptide was mostly α-helical. The ability to selectively bind to lectins was investigated by turbidity measurements as well as Surface Plasmon Resonance (SPR) studies. 2It was found that the extent of binding was dependent on the position of the galactose units and thus the primary glycopolypeptide structure. The octablock glycopolypeptide favored interaction with lectin RCA120 while the tetrablock glycopolypeptide demonstrated the strongest binding activity to Galectin-3. The results suggest that different lectins are very sensitive to glyco coding, and that precise control of carbohydrate units in synthetic polymeric glycopeptides will remain important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.