The mild phenotype associated with targeted disruption of the mouse OGG1 and NTH1 genes has been attributed to the existence of back-up activities and/or alternative pathways for the removal of oxidised DNA bases. We have characterised two new genes in human cells that encode DNA glycosylases, homologous to the bacterial Fpg (MutM)/Nei class of enzymes, capable of removing lesions that are substrates for both hOGG1 and hNTH1. One gene, designated HFPG1, showed ubiquitous expression in all tissues examined whereas the second gene, HFPG2, was only expressed at detectable levels in the thymus and testis. Transient transfections of HeLa cells with fusions of the cDNAs to EGFP revealed intracellular sorting to the nucleus with accumulation in the nucleoli for hFPG1, while hFPG2 co-localised with the 30 kDa subunit of RPA. hFPG1 was purified and shown to act on DNA substrates containing 8-oxoguanine, 5-hydroxycytosine and abasic sites. Removal of 8-oxoguanine, but not cleavage at abasic sites, was opposite base-dependent, with 8-oxoG:C being the preferred substrate and negligible activity towards 8-oxoG:A. It thus appears that hFPG1 has properties similar to mammalian OGG1 in preventing mutations arising from misincorporation of A across 8-oxoG and could function as a back-up repair activity for OGG1 in ogg1(-/-) mice.
Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.DNA damage | formamidopyrimidine-DNA glycosylase/endonuclease VIII | hydantoins | neural stem cells | neuronal progenitor cells T he base-excision repair pathway (BER) maintains genomic integrity by removing base lesions caused by oxidation, alkylation, and deamination. DNA base lesions frequently are cytotoxic or mutagenic if not removed. BER is initiated by DNA glycosylases that recognize modified bases and catalyze cleavage of the N-glycosidic bond, creating an apurinic or apyrimidinic (AP) site. The exposed DNA backbone is cleaved by the AP lyase activity of bifunctional DNA glycosylases or by an AP endonuclease. Repair synthesis is completed by gap filling and ligation (1, 2).Endonuclease VIII-like 3 (NEIL3) and endonuclease VIII-like 1 (NEIL1) are mammalian oxidized base-specific DNA glycosylases (3, 4). The function of NEIL3 has remained enigmatic, but recently the mouse ortholog was shown to remove a broad spectrum of oxidative base lesions on single-stranded DNA substrates with preference for spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh), which are further oxidation products of one of the most common base lesions, 8-oxo-7,8-dihydroguanine (8ohG) (5). These findings suggest that NEIL3 serves as a DNA glycosylase to prevent accumulation of cytotoxic and mutagenic DNA lesions in mammalian cells, although the activity of NEIL1 far exceeds that of NEIL3 on most substrates.In the late postnatal and adult brain, newborn neurons arise from neural stem/progenitor cells (NSPCs) in both the subgranular zone (SGZ) of the hippocampal dentate gyrus and in the subventricular zone (SVZ) (6). We previously reported a discrete expression pattern of Neil3 in the rodent SGZ and SVZ, confined to the embryonic and perinatal stages (7,8). These observations indicate a role for Neil3 in proliferating cells in the brain. However, naïve Neil3-knockout mice generated by us and others (4) appear phenotypically normal. After perinatal hypoxic-ischemic (HI) and adult ischemic stroke, proliferation of SVZ NSPCs is enhanced, and differentiating p...
Accumulation of oxidative DNA damage has been proposed as a potential cause of age-related cognitive decline. The major pathway for removal of oxidative DNA base lesions is base excision repair, which is initiated by DNA glycosylases. In mice, Neil3 is the main DNA glycosylase for repair of hydantoin lesions in single-stranded DNA of neural stem/progenitor cells, promoting neurogenesis. Adult neurogenesis is crucial for maintenance of hippocampus-dependent functions involved in behavior. Herein, behavioral studies reveal learning and memory deficits and reduced anxiety-like behavior in Neil3(-/-) mice. Neural stem/progenitor cells from aged Neil3(-/-) mice show impaired proliferative capacity and reduced DNA repair activity. Furthermore, hippocampal neurons in Neil3(-/-) mice display synaptic irregularities. It appears that Neil3-dependent repair of oxidative DNA damage in neural stem/progenitor cells is required for maintenance of adult neurogenesis to counteract the age-associated deterioration of cognitive performance.
High metabolic activity and low levels of antioxidant enzymes make neurons particularly prone to damage by reactive oxygen species. Thus, repair of oxidative DNA damage is essential for normal brain function. Base excision repair is the major pathway for repair of oxidative DNA damage, and is initiated by DNA glycosylases recognizing and removing the damaged base. In mammalian cells at least five different DNA glycosylases with overlapping substrate specificity, NEIL1, NEIL2, NEIL3, OGG1 and NTH1, remove oxidative DNA base lesions. Here we report mRNA expression and distribution of these five DNA glycosylases in human and rodent brains using in situ hybridization and Northern blotting supported by glycosylase activity assays. NEIL1, NEIL2, OGG1 and NTH1 showed widespread expression at all ages. In situ hybridization studies in mouse brain showed that expression of mNeil1 increased with age. In newborn mouse brain, mNeil3 revealed a discrete expression pattern in brain regions known to harbour stem cell populations, i.e., the subventricular zone, the rostral migratory stream, and the hilar region of the hippocampal formation. Expression of mNeil3 decreased with age, and in old mice brains could be detected only in layer V of neocortex. MNth1 was constitutively expressed during lifespan. In Northern blots, mOgg1 expression showed a transient decrease followed by an increase after 8 weeks of age. Assays for faPy DNA glycosylase activity revealed increased activity level with age in all brain regions analyzed. The widespread but differential expression of the DNA glycosylases recognizing oxidative base lesions suggests distinct and age dependent roles of these enzymes in genome maintenance in brain. The distribution of mNeil3 is particularly intriguing and points to a specific role of this enzyme in stem cell differentiation.
Three related orphan nuclear receptors that are expressed in the brain, NGFI-B, Nurr1, and NOR-1, were studied to compare their function as transcriptional activators. NGFI-B was able to activate (in the absence of added hormone) in CV1 cells both an NGFI-B-responsive luciferase reporter gene (containing eight copies of a response element for NGFI-B upstream of a basal prolactin promoter driving the luciferase gene, NBRE(8)-LUC), a similar thyroid hormone-receptor-responsive reporter gene (TRE(3)-LUC), and a reporter gene with an authentic promoter from a Xenopus vitellogenin gene containing two binding sites for the estrogen receptor (vit-LUC). NGFI-B activated NBRE(8)-LUC and TRE(3)-LUC (but not the vitLUC) with an amino-terminal activation domain. Nurr1 was less promiscuous as a transcriptional activator, activating.the NBRE(8)-LUC better than NGFI-B, but less than NGFI-B at the other reporter genes. NOR-1 activated only the NBRE(8)-LUC reporter gene. These results indicate that closely related nuclear receptors may differentiate between response elements or promoters and that different activation mechanisms exist depending on the promoter. This may contribute to regulation of specificity of target gene expression in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.