Obesity is an energy balance disorder associated with dyslipidemia, insulin resistance and diabetes type 2, also summarized with the term metabolic syndrome or syndrome X. Increasing evidence points to “adipocyte dysfunction”, rather than fat mass accretion per se, as the key pathophysiological factor for metabolic complications in obesity. The dysfunctional fat tissue in obesity characterizes a failure to safely store metabolic substrates into existing hypertrophied adipocytes and/or into new preadipocytes recruited for differentiation. In this review we briefly summarize the potential of redox imbalance in fat tissue as an instigator of adipocyte dysfunction in obesity. We reveal the challenge of the adipose redox changes, insights in the regulation of healthy expansion of adipose tissue and its reduction, leading to glucose and lipids overflow.
Infertility is a global problem that is on the rise, especially during the last decade. Currently, infertility affects approximately 10-15% of the population worldwide. The frequency and origin of different forms of infertility varies. It has been shown that reactive oxygen and nitrogen species (ROS and RNS) are involved in the aetiology of infertility, especially male infertility. Various strategies have been designed to remove or decrease the production of ROS and RNS in spermatozoa, in particular during in vitro fertilization. However, in recent years it has been shown that spermatozoa naturally produce a variety of ROS/RNS, including superoxide anion radical (O2 ·− ), hydrogen peroxide and NO. These reactive species, in particular NO, are essential in regulating sperm capacitation and the acrosome reaction, two processes that need to be acquired by sperm in order to achieve fertilization potential. In addition, it has recently been shown that mitochondrial function is positively correlated with human sperm fertilization potential and quality and that NO and NO precursors increase sperm motility by increasing energy production in mitochondria. We will review the new link between sperm NO-driven redox regulation and infertility herein. A special emphasis will be placed on the potential implementation of new redox-active substances that modulate the content of NO in spermatozoa to increase fertility and promote conception. LINKED ARTICLESThis article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10. 1111/bph.2015.172.issue-6 Abbreviations AR, acrosome reaction; EDRF, endothelial-derived relaxing factor; eNOS, endothelial NOS; ETC, electron transport chain; iNOS, inducible NOS; IVF, in vitro fertilization; L-NAME, N G -nitro-L-arginine methyl ester; MMP, mitochondrial membrane potential; mtNOS, mitochondrial NOS; NG, nitroglycerine; nNOS, neuronal NOS; O2 ·− , superoxide anion radical; RNS, reactive nitrogen species; ROS, reactive oxygen species; sGC, soluble GC; SNP, sodium nitroprusside; SOD, superoxide dismutase; ZP, zona pellucida IntroductionInfertility is one of the most serious medical problems worldwide. The prevalence of infertility is on the rise, especially during the last decade. Globally, one of six to seven couples worldwide currently has some difficulty with conception (Sharma et al., 2013). Infertility is usually defined as the inability to conceive after 1 year of regular unprotected intercourse, but in couples in which the female partner is >35 years of age, infertility is diagnosed after an inability to conceive for 6 months (Cooper et al., 2010). Although the frequency and origin of infertility varies, it has been established that nearly 40% of the issues involved with infertility are attributable to a male factor, another 40% due to a female factor, and 20% result from combined male and female factors (Sharlip et al., 2002). Over the past decade, significant advances have occurred in the diagnosis an...
Key pointsr White to brown adipose tissue conversion and thermogenesis can be ignited by different conditions or agents and its sustainability over the long term is still unclear.r Browning of rat retroperitoneal white adipose tissue (rpWAT) during cold acclimation involves two temporally apparent components: (1) a predominant non-selective browning of most adipocytes and an initial sharp but transient induction of uncoupling protein 1, peroxisome proliferator-activated receptor (PPAR) coactivator-1α, PPARγ and PPARα expression, and (2) the subsistence of relatively few thermogenically competent adipocytes after 45 days of cold acclimation.r The different behaviours of two rpWAT beige/brown adipocyte subsets control temporal aspects of the browning process, and thus regulation of both components may influence body weight and the potential successfulness of anti-obesity therapies.Abstract Conversion of white into brown adipose tissue may have important implications in obesity resistance and treatment. Several browning agents or conditions ignite thermogenesis in white adipose tissue (WAT). To reveal the capacity of WAT to function in a brownish/burning mode over the long term, we investigated the progression of the rat retroperitoneal WAT (rpWAT) browning during 45 days of cold acclimation. During the early stages of cold acclimation, the majority of rpWAT adipocytes underwent multilocularization and thermogenic-profile induction, as demonstrated by the presence of a multitude of uncoupling protein 1 (UCP1)-immunopositive paucilocular adipocytes containing peroxisome proliferator-activated receptor (PPAR) coactivator-1α (PGC-1α) and PR domain-containing 16 (PRDM16) in their nuclei. After 45 days, all adipocytes remained PRDM16 immunopositive, but only a few multilocular adipocytes rich in mitochondria remained UCP1/PGC-1α immunopositive. Molecular evidence showed that thermogenic recruitment of rpWAT occurred following cold exposure, but returned to starting levels after cold acclimation. Compared with controls (22 ± 1°C), levels of UCP1 mRNA increased in parallel with PPARγ (PPARα from days 1 to 7 and PGC-1α on day 1). Transcriptional recruitment of rpWAT was followed by an increase in UCP1 protein content (from days 1 to 21). Results clearly showed that most of the adipocytes within rpWAT underwent transient brown-fat-like thermogenic recruitment upon stimulation, but only a minority of cells retained a brown adipose tissue-like phenotype after the attainment of cold acclimation. Therefore, browning of WAT is dependent on both maintaining the thermogenic response and retaining enough brown-like thermogenically competent adipocytes in the long-term. Both aspects of browning could be important for long-term energy homeostasis and body-weight regulation.
Ferroptosis is a recently described form of regulated cell death characterized by intracellular iron accumulation and severe lipid peroxidation due to an impaired cysteine-glutathione-glutathione peroxidase 4 antioxidant defence axis. One of the hallmarks of ferroptosis is a specific morphological phenotype characterized by extensive ultrastructural changes of mitochondria. Increasing evidence suggests that mitochondria play a significant role in the induction and execution of ferroptosis. The present review summarizes existing knowledge about the mitochondrial impact on ferroptosis in different pathological states, primarily cancer, cardiovascular diseases, and neurodegenerative diseases. Additionally, we highlight pathologies in which the ferroptosis/mitochondria relation remains to be investigated, where the process of ferroptosis has been confirmed (such as liver- and kidney-related pathologies) and those in which ferroptosis has not been studied yet, such as diabetes. We will bring attention to avenues that could be followed in future research, based on the use of mitochondria-targeted approaches as anti- and proferroptotic strategies and directed to the improvement of existing and the development of novel therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.