Myxococcus xanthus DK1622 is shown to be a producer of myxovirescin (antibiotic TA) antibiotics. The myxovirescin biosynthetic gene cluster spans at least 21 open reading frames (ORFs) and covers a chromosomal region of approximately 83 kb. In silico analysis of myxovirescin ORFs in conjunction with genetic studies suggests the involvement of four type I polyketide synthases (PKSs; TaI, TaL, TaO, and TaP), one major hybrid PKS/NRPS (Ta-1), and a number of monofunctional enzymes similar to the ones involved in type II fatty-acid biosynthesis (FAB). Whereas deletion of either taI or taL causes a dramatic drop in myxovirescin production, deletion of both genes (DeltataIL) leads to the complete loss of myxovirescin production. These results suggest that both TaI and TaL PKSs might act in conjunction with a methyltransferase, reductases, and a monooxygenase to produce the 2-hydroxyvaleryl-S-ACP starter that is proposed to act as the biosynthetic primer in the initial condensation reaction with glycine. Polymerization of the remaining 11 acetates required for lactone formation is directed by 12 modules of Ta-1, TaO, and TaP megasynthetases. All modules, except for the first module of TaL, lack cognate acyltransferase (AT) domains. Furthermore, deletion of a discrete tandem AT-encoded by taV-blocks myxovirescin production; this suggests an "in trans" mode of action. To embellish the macrocycle with methyl and ethyl moieties, assembly of the myxovirescin scaffold is proposed to switch twice from PKS to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)-like biochemistry during biosynthesis. Disruption of the S-adenosylmethionine (SAM)-dependent methyltransferase, TaQ, shifts production toward two novel myxovirescin analogues, designated myxovirescin Q(a) and myxovirescin Q(c). NMR analysis of purified myxovirescin Q(a) revealed the loss of the methoxy carbon atom. This novel analogue lacks bioactivity against E. coli.
Deletion of taF, a homologue of 3‐hydroxy‐3‐methylglutaryl‐CoA synthase (HMGS), causes a switch in the myxovirescin programming algorithm and leads to the production of a novel myxovirescin analogue with a shorter side chain. These results provide the first in vivo evidence for the role of HMGS‐like enzymes in the incorporation of both acetate‐ and propionate‐derived units into polyketide scaffolds.
It has been proposed that two acyl carrier proteins (ACPs)-TaB and TaE--and two 3-hydroxy-3-methylglutaryl synthases (HMGSs)--TaC and TaF--could constitute two functional ACP-HMGS pairs (TaB/TaC and TaE/TaF) responsible for the incorporation of acetate and propionate units into the myxovirescin A scaffold, leading to the formation of beta-methyl and beta-ethyl groups, respectively. It has been suggested that three more proteins--TaX and TaY, which are members of the superfamily of enoyl-CoA hydratases (ECHs), and a variant ketosynthase (KS) TaK--are shared between two ACP-HMGS pairs, to give the complete set of enzymes required to perform the beta-alkylations. The beta-methyl branch is presumably further hydroxylated (by TaH) and methylated to produce the methoxymethyl group observed in myxovirescin A. To substantiate this hypothesis, a series of gene-deletion mutants were created, and the effects of these mutations on myxovirescin production were examined. As predicted, DeltataB and DeltataE ACP mutants revealed similar phenotypes to their associated HMGS mutants DeltataC and DeltataF, respectively, thus providing direct evidence for the role of TaE/TaF in the formation of the beta-ethyl branch and implying a role for TaB/TaC in the formation of the beta-methyl group. Production of myxovirescin A was dramatically reduced in a DeltataK mutant and abolished in both the DeltataX and the DeltataY mutant backgrounds. Analysis of a DeltataH mutant confirmed the role of the cytochrome P450 TaH in hydroxylation of the beta-methyl group. Taken together, these experiments support a model in which the discrete ACPs TaB and TaE are compatible only with their associated HMGSs TaC and TaF, respectively, and function in a substrate-specific manner. Both TaB and TaC are essential for myxovirescin production, and the TaB/TaC pair can rescue antibiotic production in the absence of either TaE or TaF. Finally, the reduced level of myxovirescin production in the DeltataE mutant, relative to the DeltataF strain, suggests an additional function of the TaE ACP.
Myxococcus xanthus cells coordinate cellular motility, biofilm formation, and development through the use of cell signaling pathways. In an effort to understand the mechanisms underlying these processes, the inner membrane (IM) and outer membrane (OM) of strain DK1622 were fractionated to examine protein localization. Membranes were enriched from spheroplasts of vegetative cells and then separated into three peaks on a three-step sucrose gradient. The high-density fraction corresponded to the putative IM, the medium-density fraction corresponded to a putative hybrid membrane (HM), and the low-density fraction corresponded to the putative OM. Each fraction was subjected to further separation on discontinuous sucrose gradients, which resulted in discrete protein peaks for each major fraction. The purity and origin of each peak were assessed by using succinate dehydrogenase (SDH) activity as the IM marker and reactivities to lipopolysaccharide core and O-antigen monoclonal antibodies as the OM markers. As previously reported, the OM markers localized to the low-density membrane fractions, while SDH localized to high-density fractions. Immunoblotting was used to localize important motility and signaling proteins within the protein peaks. CsgA, the C-signalproducing protein, and FibA, a fibril-associated protease, were localized in the IM (density, 1.17 to 1.24 g cm ؊3 ). Tgl and Cgl lipoproteins were localized in the OM, which contained areas of high buoyant density (1.21 to 1.24 g cm ؊3 ) and low buoyant density (1.169 to 1.171 g cm ؊3 ). FrzCD, a methyl-accepting chemotaxis protein, was predominantly located in the IM, although smaller amounts were found in the OM. The HM peaks showed twofold enrichment for the type IV pilin protein PilA, suggesting that this fraction contained cell poles. Two-dimensional polyacrylamide gel electrophoresis revealed the presence of proteins that were unique to the IM and OM. Characterization of proteins in an unusually low-density membrane peak (1.072 to 1.094 g cm ؊3 ) showed the presence of Ta-1 polyketide synthetase, which synthesizes the antibiotic myxovirescin A.
S-adenosylhomocysteine hydrolase (AHCY) is thought to be located at the sites of ongoing AdoMet-dependent methylation, presumably in the cell nucleus. Endogenous AHCY is located both in cytoplasm and the nucleus. Little is known regarding mechanisms that drive its subcellular distribution, and even less is known on how mutations causing AHCY deficiency affect its intracellular dynamics. Using fluorescence microscopy and GFP-tagged AHCY constructs we show significant differences in the intensity ratio between nuclei and cytoplasm for mutant proteins when compared with wild type AHCY. Interestingly, nuclear export of AHCY is not affected by leptomycin B. Systematic deletions showed that AHCY has two regions, located at both sides of the protein, that contribute to its nuclear localization, implying the interaction with various proteins. In order to evaluate protein interactions in vivo we engaged in bimolecular fluorescence complementation (BiFC) based studies. We investigated previously assumed interaction with AHCY-like-1 protein (AHCYL1), a paralog of AHCY. Indeed, significant interaction between both proteins exists. Additionally, silencing AHCYL1 leads to moderate inhibition of nuclear export of endogenous AHCY.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.