Background: Genetic loss-of-function variants in ANGPTL3 are associated with lower levels of plasma lipids. Vupanorsen is a hepatically targeted antisense oligonucleotide that inhibits Angiopoietin-like 3 (ANGPTL3) protein synthesis. Methods: Adults with non-high-density lipoprotein cholesterol (non-HDL-C) ≥100 mg/dL and triglycerides 150 to 500 mg/dL on statin therapy were randomized in a double-blind fashion to placebo or 1 of 7 vupanorsen dose regimens (80, 120, or 160 mg SC every 4 weeks, or 60, 80, 120, or 160 mg SC every 2 weeks). The primary end point was placebo-adjusted percentage change from baseline in non-HDL-C at 24 weeks. Secondary end points included placebo-adjusted percentage changes from baseline in triglycerides, low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (ApoB), and ANGPTL3. Results: Two hundred eighty-six subjects were randomized: 44 to placebo and 242 to vupanorsen. The median age was 64 (interquartile range, 58-69) years, 44% were female, the median non-HDL-C was 132.4 (interquartile range, 118.0-154.1) mg/dL, and the median triglycerides were 216.2 (interquartile range, 181.4-270.4) mg/dL. Vupanorsen resulted in significant decreases from baseline over placebo in non-HDL-C ranging from 22.0% in the 60 mg every 2 weeks arm to 27.7% in the 80 mg every 2 weeks arm (all P <0.001 for all doses). There were dose-dependent reductions in triglycerides that ranged from 41.3% to 56.8% (all P <0.001). The effects on LDL-C and ApoB were more modest (7.9%-16.0% and 6.0%-15.1%, respectively) and without a clear dose-response relationship‚ and only the higher reductions achieved statistical significance. ANGPTL3 levels were decreased in a dose-dependent manner by 69.9% to 95.2% (all P <0.001). There were no confirmed instances of significant decline in renal function or platelet count with vupanorsen. Injection site reactions and >3x elevations of alanine aminotransferase or aspartate aminotransferase were more common at higher total monthly doses (up to 33.3% and 44.4%, respectively), and there was a dose-dependent increase in hepatic fat fraction (up to 76%). Conclusions: Vupanorsen administered at monthly equivalent doses from 80 to 320 mg significantly reduced non-HDL-C and additional lipid parameters. Injection site reactions and liver enzyme elevations were more frequent at higher doses, and there was a dose-dependent increase in hepatic f at fraction.
Sensory tricks are various maneuvers that can ameliorate dystonia. Common characteristics are well known, but their variety is wide, sensory stimulation is not necessarily the critical feature, and their physiology is unknown. To enumerate the various forms of sensory tricks and describe their nature, research findings and theories that may elucidate their neurophysiologic mechanism, we reviewed the literature pertaining to sensory tricks, including variants like motor tricks, imaginary tricks, forcible tricks and reverse sensory tricks. On the basis of this information, we propose a new classification of sensory tricks to include its variants. We highlight neurophysiologic evidence suggesting that sensory tricks work by decreasing abnormal facilitation. We tie this with established dystonia pathogenesis and postulate that sensory tricks decrease abnormally increased facilitation-to-inhibition ratios in the dystonic brain. It appears worthwhile for patients to search for possible sensory tricks.
People with Parkinson’s (PWP) disease are under constant tension with respect to their dopamine replacement therapy (DRT) regimen. Waiting too long between doses results in more prominent symptoms, loss of motor function, and greater risk of falling per step. Shortened pill cycles can lead to accelerated habituation and faster development of disabling dyskinesias. The Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) is the gold standard for monitoring Parkinson’s disease progression but requires a neurologist to administer and therefore is not an ideal instrument to continuously evaluate short-term disease fluctuations. We investigated the feasibility of using speech to detect changes in medication states, based on expectations of subtle changes in voice and content related to dopaminergic levels. We calculated acoustic and prosodic features for three speech tasks (picture description, reverse counting, and diadochokinetic rate) for 25 PWP, each evaluated “ON” and “OFF” DRT. Additionally, we generated semantic features for the picture description task. Classification of ON/OFF medication states using features generated from picture description, reverse counting and diadochokinetic rate tasks resulted in cross-validated accuracy rates of 0.89, 0.84, and 0.60, respectively. The most discriminating task was picture description which provided evidence that participants are more likely to use action words in ON than in OFF state. We also found that speech tempo was modified by DRT. Our results suggest that automatic speech assessment can capture changes associated with the DRT cycle. Given the ease of acquiring speech data, this method shows promise to remotely monitor DRT effects.
Technological advances in multimodal wearable and connected devices have enabled the measurement of human movement and physiology in naturalistic settings. The ability to collect continuous activity monitoring data with digital devices in real-world environments has opened unprecedented opportunity to establish clinical digital phenotypes across diseases. Many traditional assessments of physical function utilized in clinical trials are limited because they are episodic, therefore, cannot capture the day-to-day temporal fluctuations and longitudinal changes in activity that individuals experience. In order to understand the sensitivity of gait speed as a potential endpoint for clinical trials, we investigated the use of digital devices during traditional clinical assessments and in real-world environments in a group of healthy younger (n = 33, 18–40 years) and older (n = 32, 65–85 years) adults. We observed good agreement between gait speed estimated using a lumbar-mounted accelerometer and gold standard system during the performance of traditional gait assessment task in-lab, and saw discrepancies between in-lab and at-home gait speed. We found that gait speed estimated in-lab, with or without digital devices, failed to differentiate between the age groups, whereas gait speed derived during at-home monitoring was able to distinguish the age groups. Furthermore, we found that only three days of at-home monitoring was sufficient to reliably estimate gait speed in our population, and still capture age-related group differences. Our results suggest that gait speed derived from activities during daily life using data from wearable devices may have the potential to transform clinical trials by non-invasively and unobtrusively providing a more objective and naturalistic measure of functional ability.
The temporal discrimination threshold (TDT) is the shortest interstimulus interval at which a subject can perceive successive stimuli as separate. To investigate the effects of aging on TDT, we studied tactile TDT using the method of limits with 120% of sensory threshold in each hand for each of 100 healthy volunteers, equally divided among males and females, across ten age groups, from 18 to 79 years. Linear regression analysis showed that age was significantly related to left hand mean, right hand mean and mean of two hands with R-square equal to 0.08, 0.164 and 0.132, respectively. Reliability analysis indicated that the three measures had fair-to-good reliability (intraclass correlation coefficient: 0.4-0.8). We conclude that TDT is affected by age and has fair-to-good reproducibility using our technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.