The Compact Linear Collider (CLIC) is an option for a future collider operating at centre-of-mass energies up to , providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: , 1.4 and . The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung () and -fusion (), resulting in precise measurements of the production cross sections, the Higgs total decay width , and model-independent determinations of the Higgs couplings. Operation at provides high-statistics samples of Higgs bosons produced through -fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes and allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
Detector-plane prototypes of the very forward calorimetry of a future detector at an e + e − collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end and ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.
A prototype of a luminometer, designed for a future e + e − collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Molière radius has been determined to be 24.0 ± 0.6 (stat.) ± 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.
A new design of a detector plane of sub-millimetre thickness for an electromagnetic sampling calorimeter is presented. It is intended to be used in the luminometers LumiCal and BeamCal in future linear e + e − collider experiments. The detector planes were produced utilising novel connectivity scheme technologies. They were installed in a compact prototype of the calorimeter and tested at DESY with an electron beam of energy 1-5 GeV. The performance of a prototype of a compact LumiCal comprising eight detector planes was studied. The effective Molière radius at 5 GeV was determined to be (8.1 ± 0.1 (stat) ± 0.3 (syst)) mm, a value well reproduced by the Monte Carlo (MC) simulation (8.4 ± 0.1) mm. The dependence of the effective Molière radius on the electron energy in the range 1-5 GeV was also studied. Good agreement was obtained between data and MC simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.