The air-water two-phase flow plays an important role in many applications of industry fields. Usually, a 90-degree bend is used to connect pipes for changing the direction of flow which influences the two-phase flow pattern. In this paper, the effect of 90-degree bend under different ranges of gas and liquid superficial velocities on the two-phase flow patterns in the horizontal pipe located after the bend was experimentally investigated, and then results were presented and compared in a two-phase flow pattern map. Also, tomographic images and probability density functions were used to capture the cross-section void fraction and its distribution for the two-phase flow patterns. The results revealed that at low liquid and gas flow rates, a stratified-wavy flow pattern was observed as a dominant flow pattern. While the wavy-annular and semiannular flow patterns were observed at a high range of gas flow rates in the horizontal pipe. The results also showed that at the high range of liquid flow rate, bubbly, plug, slug, stratified-wavy, and wavy-annular flow patterns were observed in the horizontal pipe when the gas flow increased. The tomographic images and probability density functions gave good agreement with the experimental observations and results.
Air-water two-phase flow in pipes introduces a noticeable challenge due to the complexity of the fluids. Thus, to estimate the best design and reasonable financing cost of the transportation pipelines where the bends are presenting a part of their accessories, the investigators should have been able to estimate the flow regime occurring at different directions. An experiment was carried out by using a 90o bend fixed with two pipes where the flow was upstream from a vertical to a horizontal pipe which were representing the bend inlet and outlet respectively. Two wire-mesh sensors were used for obtaining the data of the void fractions (α) at water superficial velocities (Usl) which changed from 0.052 to 0.419m/s, and air superficial velocities (Usg) from 0.05 to 4.7m/s. Furthermore, the characterization of flow regimes of the air-water flow at both bend inlet and outlet were competed accurately by using void fraction analysis of the time series, Power Spectral Density (PSD), tomographic images observed by the sensor program, and the Probability Density Function (PDF) method. The flow regimes of vertical flow lines at the bend inlet were observed as bubbly, cap-bubble, slug, and churn flow, whereas the flow regimes of the horizontal flow line at the bend outlet were characterized as having stratified, stratified wavy, bubbly, plug, slug, wavy annular, and semi-annular flow due to the gravity and bend effects.
The current investigation aimed to identify pressure gradients and to study the fully developed flow patterns of oil-gas as a blend in a pipe of internal diameter 50 mm and 6 m length with different orientations of 0, 30, and 45-degree. The study was performed at constant values of liquid superficial velocities 0.052, 0.157, 0.262, 0.314, 0.419, and 0.524 m/s, and inlet superficial velocities of gas were ranged from 0.05 to 4.7 m/s at atmospheric pressure. Two pressure transducers located up and downstream were used to measure pressure drops inside the tested pipe. Flow patterns were derived by using the correlation between pressure gradients and time series, the Probability Density Function of differential pressures, pressure gradients with gas superficial velocities, and total pressure losses with mean void fractions. The flow patterns of oil-gas were observed as a uniform stratified flow in the pipe on a 0-degree orientation at various superficial velocities. Stratified, wavy, and slug flow patterns were observed at 30-degree orientation, whereas, bubbly, slug, and churn flow patterns were observed in the pipe of 45-degree orientation. The experiment also showed that pressure drop gradients decreased with increased void fractions, gas superficial velocities, and degree rotations of the flow lines. Finally, the validation of using pressure transducers as a technique for estimating the flow patterns of two-phase flow showed acceptable results with some kind of patterns.
To improve the performance of vapor compression refrigeration systems that use vertical gravitational flash tank separators, the liquid separation efficiency of the vertical gravitational flash tank separator requires to be approved. To approach this improvement, the two-phase flow development and its behavior after the expansion device need to be investigated and predicted. For thus, this paper presents a three-dimensional computational investigation of the two-phase flow development of R134a after the expansion device in a horizontal pipe. Computational Fluid Dynamic (CFD) was used to predict the two-phase development and its behavior in the horizontal pipe. ANSYS 16.2 program was used to generates the geometry of the three-dimensional horizontal pipe of 2 meters long and 25 mm inner diameter. The hexahedral mesh was generated and it is assessed to obtain the optimum mesh size and number. Eulerian-Eulerian two-phase model was used with k-ɛ turbulence model. R134a was used as a working fluid in the horizontal pipe utilizing four different inlet diameters: 12, 12.5, 25, and 50.0 mm. Mass flux and vapor quality have been changed from 288 to 447 kg/m2.s and from 10 to 20% respectively. Results were validated against experimental results from the literature and revealed that the separation region length is affected by the initial phase velocities, inlet vapor quality, and inlet tube diameter. An empirical correlation to predict the expansion region length is proposed as a function of Froude, Webber, and Lockhart-Martinelli numbers.
The current research aims to improve the cetane number of diesel extracted from the crude oil of Tawke region-Iraq Kurdistan. A specific mixture of chemical compounds was prepared which included m-nitrophenol, 4-nitro toluene, and nitrobenzene. The components' effects were investigated with regard to the cetane number, flash point, viscosity, and refractive index of diesel. The quantity of each compound mixed with diesel was prepared based on the statistical analysis of the experiment device (Box–Behnken Designs-BBDs). The tested mixture showed a good agreement and improvement of cetane and flash point and a very low effect on viscosity and refractive index. According to the statistical analysis, the main influence on cetane number and the flashpoint was from m-nitrophenol. The investigation showed that the best results were acquired from the samples of 25PPM 4-nitro toluene and 50PPM m-nitrophenol with a cetane number of 65.3. The correlation and the interaction of the regression equation were linear with all cases. It is worth mentioning that all additives positively influenced the cetane number in the regression equation. The sulfur content was measured as well, and the obtained weight percentage of sulfur was 0.8404%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.