Pollution of water resources by acid mine drainage (AMD) has been an issue of primary concern in recent decades, since it negatively affects the environment and its suitability to foster life. As such, efforts to recover, valorise and beneficiate minerals acquired from AMD treatment process have been ongoing, albeit with minimal success. With that in mind, this study unpacks novel ways of beneficiating AMD via the synthesis of valuable minerals with myriads of industrial applications. To this end, real AMD was used to synthesize goethite, hematite, magnetite, and gypsum (product minerals). Drinking water was also reclaimed as part of the treatment process, hence rendering this system a zero-liquid-discharge (ZLD) process. For the synthesis of goethite, hematite, and magnetite, Fe(III) and Fe(II) were recovered via sequential precipitation in batch reactors. Lime was added to treated water to synthesize high-grade gypsum. Furthermore, reverse osmosis (RO) was employed to reclaim drinking water as per South African drinking water standards (SANS 241) specifications. Product minerals were ascertained using advanced analytical techniques. Concisely, this study proved that AMD can be beneficiated into valuable minerals, which could be utilized in a number of industrial applications. The profits from selling the product minerals can potentially aid in offsetting the running costs of the treatment process, hence making this
Human coronaviruses (HCoVs) attracted attention in 2002 with the severe acute respiratory syndrome (SARS) outbreak, caused by the SARS-CoV virus (mortality rate 9.6%) and gained further notoriety in 2012 with the Middle East respiratory syndrome (MERS) (mortality rate 34.3%). Currently, the world is experiencing an unprecedented crisis due to the COVID-19 global pandemic, caused by the SARS-CoV-2 virus in 2019 (estimated mortality rate 10%). The virus can pass to the faeces of some patients, as was the case of SARS-CoV and MERS-CoV viruses. This suggests that apart from the airborne (droplets and aerosols) and person-to-person (including fomites) transmission, the faecal–oral route of transmission could also be possible for HCoVs. In this eventuality, natural water bodies could act as a virus reservoir of infection. Here, the temporospatial migration and attenuation of the SARS-CoV-2 virus in municipal wastewater, the receiving environment, and drinking water, is evaluated, using the polymerase chain reaction (PCR), in the South African setting. SARS-CoV-2 viral RNA was identified in raw wastewater influent but was below the detection limit in the latter treatment stages. This suggests that the virus decays from as early as primary treatment and this could be attributed to wastewater's hydraulic retention time (2–4 h), composition, and more importantly temperature (>25 °C). Therefore, the probability of SARS-CoV-2 virus transportation in water catchments, in the eventuality that the virus remains infective in wastewater, appears to be low in the South African setting. Finally, catchment-wide monitoring offers a snapshot of the status of the catchment in relation to contagious viruses and can play a pivotal role in informing the custodians and downstream water users of potential risks embedded in water bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.