In the current sample, the genes GNAS, GNAQ, and GNA11 were widely altered across cancer types, and these alterations often were accompanied by specific genomic abnormalities in AURKA, CBL, and LYN. Therefore, targeting GNA* alterations may require drugs that address the GNA* signal and important co-alterations. Cancer 2018;00:000-000. © 2018 American Cancer Society.
Background. A scholar’s h-index is defined as the number of h papers published, each of which has been cited at least h times. We hypothesized that the h-index strongly correlates with the academic rank of surgical oncologists. Methods. We utilized the National Cancer Institute (NCI) website to identify NCI-designated Comprehensive Cancer Centers (CCC) and Doximity to identify the 50 highest-ranked general surgery residency programs with surgical oncology divisions. Demographic data of respective academic surgical oncologists were collected from departmental websites and Grantome. Bibliometric data were obtained from Web of Science. Results. We identify 544 surgical oncologists from 64 programs. Increased h-index was associated with academic rank (p < 0.001), male gender (p < 0.001), number of National Institutes of Health (NIH) grants (p < 0.001), and Affiliation with an NCI CCC (p = 0.018) but not number of additional degrees (p = 0.661) or Doximity ranking (p = 0.102). H-index was a stronger predictor of academic rank (r = 0.648) than total publications (r = 0.585) or citations (r = 0.450). Conclusions. This is the first report to assess the h-index within academic surgical oncology. H-index is a biblio-metric predictor of academic rank that correlates with NIH grant funding and NCI CCC Affiliation. We also highlight a previously unexpected and unappreciated gender disparity in the academic productivity of US surgical oncologists. When academic rank was accounted for, female surgical oncologists had lower h-indices compared with their male colleagues. Evaluation of the etiologies of this gender disparity is needed to address barriers to academic productivity faced by female surgical oncologists as they progress through their careers.
Wireless transponder tracking was validated as a dosimetrically accurate way to provide gated SABR of the liver. The dynamic tracking accuracy of the Calypso system met manufacturer's specification, even for continuous large amplitude motion that can be encountered when tracking liver tumors close to the diaphragm. The measured beam-hold gating latency was appropriate for targets that will traverse the gating limit each respiratory cycle causing the beam to be interrupted constantly throughout treatment delivery.
The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74‐compound library of known Nudix enzyme substrates. We found substrates for four enzymes with k cat/K m values >10,000 M−1 s−1: Q92EH0_LISIN of Listeria innocua serovar 6a against ADP‐ribose, Q5LBB1_BACFN of Bacillus fragilis against 5‐Me‐CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8‐oxo‐dATP and 3'‐dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty‐two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported k cat/K m values exhibited against these canonical substrates are well under 105 M−1 s−1. By contrast, several Nudix enzymes show much larger k cat/K m values (in the range of 105 to >107 M−1 s−1) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810–1822. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Purpose: Gastrointestinal stromal tumors (GIST) commonly arise in different regions of the stomach and are driven by various mutations (most often in KIT, PDGFRA, and SDHx). We hypothesized that the anatomic location of gastric GIST is associated with unique genomic profiles and distinct driver mutations. Experimental Design: We compared KIT versus non-KIT status with tumor location within the National Cancer Database (NCDB) for 2,418 patients with primary gastric GIST. Additionally, we compiled an international cohort (TransAtlantic GIST Collaborative, TAGC) of 236 patients and reviewed sequencing results, cross-sectional imaging, and operative reports. Subgroup analyses were performed for tumors located proximally versus distally. Risk factors for KIT versus non-KIT tumors were identified using multivariate regression analysis. A random forest machine learning model was then developed to determine feature importance. Results: Within the NCDB cohort, non-KIT mutants dominated distal tumor locations (P < 0.03). Proximal GIST were almost exclusively KIT mutant (96%) in the TAGC cohort, whereas 100% of PDGFRA and SDH-mutant GIST occurred in the distal stomach. On multivariate regression analysis, tumor location was associated with KIT versus non-KIT mutations. Using random forest machine learning analysis, stomach location was the most important feature for predicting mutation status. Conclusions: We provide the first evidence that the mutational landscape of gastric GIST is related to tumor location. Proximal gastric GIST are overwhelmingly KIT mutant, irrespective of morphology or age, whereas distal tumors display non-KIT genomic diversity. Anatomic location of gastric GIST may therefore provide immediate guidance for clinical treatment decisions and selective confirmatory genomic testing when resources are limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.